Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss of wheat and barley. Bacteria isolated from wheat kernels and plant anthers were screened for antagonistic activity against F. graminearum. Based on its in vitro effectiveness, strain SG6 was selected for characterization and identified as Bacillus subtilis. B. subtilis SG6 exhibited a high antifungal effect on the mycelium growth, sporulation and DON production of F. graminearum with the inhibition rate of 87.9%, 95.6% and 100%, respectively. In order to gain insight into biological control effect in situ, we applied B. subtilis SG6 at anthesis through the soft dough stage of kernel development in field test. It was revealed that B. subtilis SG6 significantly reduced disease incidence (DI), FHB index and DON (P≤0.05). Further, ultrastructural examination shows that B. subtilis SG6 strain induced stripping of F. graminearum hyphal surface by destroying the cellular structure. When hypha cell wall was damaged, the organelles and cytoplasm inside cell would exude, leading to cell death. The antifungal activity of SG6 could be associated with the coproduction of chitinase, fengycins and surfactins.
The serious shuttle effect of soluble polysulfides inevitably leads to low sulfur utilization and faster capacity decay, thus preventing the development of Li–S batteries. Array electrodes have attracted much attention owing to their binder-free and freestanding features. However, the insufficient surface area, lack of active sites with polysulfides, and poor conductive nature of the array electrode could not satisfy the need for high-rate and long-life Li–S batteries, especially for the high sulfur loading of Li–S batteries. Thus, in this work, we constructed the hierarchical C@SnO2/1T-MoS2 (C@SnO2@TMS) array electrode as the sulfur host. The hierarchical C@SnO2@TMS demonstrated strong adsorption with polysulfides, which could effectively facilitate polysulfide redox kinetics. With the C@SnO2@TMS/S as the electrode, the batteries achieved superb C-rate properties, high specific capacity, and ultralong lifespan. Even undergoing 4000 cycles at 5 C, the battery could retain a high specific capacity of 448 mAh g–1 with the capacity decay as low as 0.009% per cycle.
Laccase is a ligninolytic enzyme that is widespread in white-rot fungi. Alginate-chitosan microcapsules prepared by an emulsification-internal gelation technique were used to immobilize laccase. Parameters of the immobilization process were optimized. Under the optimal immobilization conditions (2% sodium alginate, 2% CaCl 2 , 0.3% chitosan and 1:8 ratio by volume of enzyme to alginate), the loading efficiency and immobilized yield of immobilized laccase were 88.12% and 46.93%, respectively. Laccase stability was increased after immobilization. Both the free and immobilized laccase alone showed a very low decolorization efficiency when Alizarin Red was selected for dye decolorization test. When 0.1 mM 2,2¢-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) was added into the decolorization system, the decolorization efficiency increased significantly. Immobilized laccase retained 35.73% activity after three reaction cycles. The result demonstrated that immobilized laccase has potential application in dyestuff treatment.
Novel flowerlike nanostructures consisting of Cu 2 O nanopetals were successfully synthesized by a facile wet chemical method for the first time. The synthesized products were systematically studied by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy. The results showed that the nucleation and growth of the nanoflowers were governed by a nucleation-dissolution-recrystallization growth mechanism. It is noteworthy that the initially formed Cu 2 O nanoparticles without addition of NaOH were crucial to the growth of the final nanoarchitectures. A UV-vis spectrum was used to estimate the band gap energies of the nanoflowers. Further control experiments were also carried out to investigate the factors that impact the morphology and size of the products. It was demonstrated that the concentrations of NaOH and cetyltrimethylammonium bromide (CTAB) play key roles in the formation of the as-synthesized nanoflowers. By adjusting the concentration of NaOH and CTAB, temperature, and the quantity of water, Cu 2 O micrograss, nanorods, and pricky microrods can be synthesized accordingly. Our stepwise synthetic method may shed some light on the design of other well-defined complex nanostructures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.