Background: Aqueous-deficient dry eye disease (ADDED) resulting from dysfunction of the lacrimal gland (LG) is currently incurable. Although LG stem/progenitor cell-based therapy is considered to be a promising strategy for ADDED patients, the lack of a reliable serum-free culture method to obtain enough lacrimal gland stem cells (LGSCs) and the basic standard of LGSC transplantation are obstacles for further research. Methods: Adult mouse LGSCs were cultured in Matrigel-based 3D culture under serum-free culture condition, which contained EGF, FGF10, Wnt3A, and Y-27632. LGSCs were continuously passaged over 40 times every 7 days, and the morphology and cell numbers were recorded. LGSCs were induced to differentiate to ductal cells by reducing Matrigel rigidity, while fetal bovine serum was used for the induction of acinar cells. RT-PCR or qRT-PCR analysis, RNA-sequence analysis, H&E staining, and immunofluorescence were used for characterization and examining the differentiation of LGSCs. LGSCs were allotransplanted into diseased LGs to examine the ability of repairing the damage. The condition of eye orbits was recorded using a camera, the tear production was measured using phenol red-impregnated cotton threads, and the engraftments of LGSCs were examined by immunohistochemistry. Results: We established an efficient 3D serum-free culture for adult mouse LGSCs, in which LGSCs could be continuously passaged for long-term expansion. LGSCs cultured from both the healthy and ADDED mouse LGs expressed stem/progenitor cell markers Krt14, Krt5, P63, and nestin, had the potential to differentiate into acinar or ductal-like cells in vitro and could engraft into diseased LGs and relieve symptoms of ADDED after orthotopic injection of LGSCs. Conclusion: We successfully established an efficient serum-free culture for adult mouse LGSCs aiming at LG repair for the first time. Our approach provides an excellent theoretical and technical reference for future clinical research for ADDED stem cell therapy.
Tongue squamous cell carcinoma (TSCC) is the most common head and neck cancer and accounts for 1%-2% of all human malignancies (Erickson, 2017). Many studies have indicated that tobacco smoking is an important risk factor for TSCC (Hashibe et al., 2009). Smoking is related to a poor prognosis in TSCC patients by decreasing survival rate and increasing the risk of recurrence, as well by increasing the incidence of secondary cancers (Warren, Kasza, Reid, Cummings, & Marshall, 2013). Smoking during cancer treatment is associated with
Background The comparatively small genome, well elucidated functional genomics and rapid life cycle confer T7 bacteriophage with great advantages for bio-application. Genetic manipulation of T7 genome plays a key role in T7 related applications. As one of the important aspects in T7 phage genetic modification, gene knock-in refers to two main approaches including direct genetic manipulation in vitro and recombineering. Neither of these available methods are efficient enough to support the development of innovative applications capitalizing on T7 bio-system and thus there is room for novel strategies that address this issue. Integration mediated by the ΦC31 integrase is one of the most robust site-specific recombination systems. ΦC31 integrases with enhanced activity and specificity have been developed such that it is ideal to effectuate exogenous DNA knock-in of T7 phage with advanced ΦC31 integrase. Methods Plasmid construction was conducted by routine molecular cloning technology. The engineered T7 bacteriophages were constructed through homologous recombination with corresponding plasmids and the functional T7 phage was designated as T7∆G10G11-attB. In the integration reaction, hosts with both executive plasmids (pEXM4) and donor plasmids (pMCBK) were lysed by T7∆G10G11-attB. Progenies of T7 phages that integrated with pMCBK were isolated in restrict hosts and validated by sequencing. T7∆G10G11-attB capacity limit was explored by another integration reactions with donor plasmids that contain exogenous DNA of various lengths. Results T7∆G10G11-attB exhibits abortive growth in restrictive hosts, and a bacterial attachment site recognized by ΦC31 integrase (attB) was confirmed to be present in the T7∆G10G11-attB genome via sequencing. The integration reaction demonstrated that plasmids containing the corresponding phage attachment site (attP) could be integrated into the T7∆G10G11-attB genome. The candidate recombinant phage was isolated and validated to have integrated exogenous DNA. The maximum capacity of T7∆G10G11-attB was explored, and it’s found that insertion of exogenous DNA sequences longer than 2 kbp long can be accommodated stably. Conclusion We advanced and established a novel approach for gene knock-in into the T7 genome using ΦC31 integrase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.