Qualitatively novel results on nonlocality phenomena in perturbative transport experiments are reported. Here, nonlocality means a rapid response in the core follows an edge perturbation on a time scale far shorter than any standard approximation to the global, diffusive model confinement time. Sequential firing of SMBI on the HL-2A tokamak sustained the increase in the core temperature in response to the edge perturbation. O-mode reflectometers are introduced to measure density fluctuations and show that the central turbulence is suppressed during nonlocallity, suggesting that the interpretation of the phenomenon as due to the formation of an 'ITB-like' structure is plausible. ECH switch-off experiments on the HL-2A tokamak demonstrated that the non-local response is sensitive to the deposition location. Taken together, these results suggest that non-locality phenomena have several aspects in common which can be linked to certain simple, generic elements of tokamak turbulence physics.
Strong resonant and non-resonant internal kink modes (abbreviated as RKs and NRKs, respectively), which are also called resonant and non-resonant fishbones, are observed on HL-2A tokamak with high-power ECRH + ECCD− (or ECRH) and ECRH + ECCD+, respectively. (‘Resonant’ derives from the existence of q = 1 surface (the resonant surface), and ‘non-resonant’ originates from the absence of q = 1 surface (). ECCD+ and ECCD− mean the driving direction of energetic electrons is the same and opposite to plasma current, respectively.) RK has features of periodic strong bursting amplitude and rapid chirping-down frequency, but NRK usually has the saturated amplitude, slow changed or constant frequency and long-lasting time. The NRK excited by energetic electrons is found for the first time. The reversed q-profiles are formed, and qmin decreases during plasma current ramp-up. The value of qmin is slightly smaller and a bit bigger than unity for RK and NRK conditions, respectively. The internal kink mode (IKM) structures of RKs and NRKs are confirmed by the ECEI system. Although there are different current drive directions of ECCD for excitation of RK and NRK, they all propagate in electron diamagnetic directions in poloidal. The radial mode structures, frequency and growth rate for IKMs are obtained by solving the dispersion relationship. The NRK is stable when qmin is larger than a certain value, and with the decreasing qmin the frequency drops, but the growth rate almost keeps constant when . This result is in agreement with experimental observation. Studying IKMs excited by energetic electrons can provide important experimental experiences for ITER, because the NRKs may be excited by high-power non-inductive drive of ECCD or ECRH in the operation of hybrid scenarios.
Effect of the pedestal deposited impurity on the edge-localized mode (ELM) behaviour has been observed and intensively investigated in the HL-2A tokamak. Impurities have been externally seeded by a newly developed laser blow-off (LBO) system. Both mitigation and suppression of ELMs have been realized by LBO-seeded impurity. Measurements have shown that the LBO-seeded impurity particles are mainly deposited in the pedestal region. During the ELM mitigation phase, the pedestal density fluctuation is significantly increased, indicating that the ELM mitigation may be achieved by the enhancement of the pedestal transport. The transition from ELM mitigation to ELM suppression was triggered when the number of the LBO-seeded impurity exceeds a threshold value. During the ELM suppression phase, a harmonic coherent mode (HCM) is excited by the LBO-seeded impurity, and the pedestal density fluctuation is significantly decreased, the electron density is continuously increased, implying that HCM may reduce the pedestal turbulence, suppress ELMs, increase the pedestal pressure, thus extending the Peeling–Ballooning instability limit. It has been found that the occurance of the ELM mitigation and ELM suppression closely depends on the LBO laser spot diameter.
In order to avoid a fringe jump caused by high plasma density and pellet injection [Y. Zhou et al., Rev. Sci. Instrum. 87, 11E107 (2016)], a new CO dispersion interferometer is designed and commissioned on HL-2A for average line-density measurement and density feedback control. The second harmonic technology in this system eliminates the phase shift caused by mechanical vibration. Signals are processed by a digital phase comparator and can be monitored in real time. A series of experiments are conducted to study the characteristics of the system such as a second harmonic coefficient and long-term stability. The resolution of density measurement is less than 8 × 10/m, and the experiment result on HL-2A demonstrates the interferometer's capability to track plasma density evolution with rapid change. The system also shows good stability against mechanical vibrations.
A bioflocculant (MBFA18) was produced by Aspergillus niger (A18) using potato starch wastewater (PSW) as nutrients. The cultivation processes and flocculating treatment for PSW purification were systematically studied. The flocculating rate of the MBFA 18 achieved 90.06% (kaolin clay) under the optimal cultivation condition (PSW with 5950 mg/L COD, 20 g/L glucose, 0.2 g/L urea and without phosphorus source addition and pH adjustment). Furthermore, effects of flocculant dosage, initial pH, coagulant aid (CaCl2) addition and sedimentation time on the PSW treatment were discussed and studied in detail. The optimum flocculation treatment conditions were determined according to the treatment efficiency, cost and flocculation conditions. During the PSW treatment, 2 mL/L bioflocculant (1.89 g/L) dosage and 0.5 mol/L coagulant aid addition were applied without pH adjustment and 91.15% COD and 60.22% turbidity removal rate could be achieved within 20 min. The comparative study between the bioflocculant and conventional chemical flocculants showed excellent flocculating efficiency of MBFA 18 with lower cost (4.7 yuan/t), which indicated that the bioflocculant MBFA 18 produced in PSW substrate has a great potential to be an alternative flocculant in PSW treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.