BackgroundExpansins are plant cell wall loosening proteins that are involved in cell enlargement and a variety of other developmental processes. The expansin superfamily contains four subfamilies; namely, α-expansin (EXPA), β-expansin (EXPB), expansin-like A (EXLA), and expansin-like B (EXLB). Although the genome sequencing of soybeans is complete, our knowledge about the pattern of expansion and evolutionary history of soybean expansin genes remains limited.ResultsA total of 75 expansin genes were identified in the soybean genome, and grouped into four subfamilies based on their phylogenetic relationships. Structural analysis revealed that the expansin genes are conserved in each subfamily, but are divergent among subfamilies. Furthermore, in soybean and Arabidopsis, the expansin gene family has been mainly expanded through tandem and segmental duplications; however, in rice, segmental duplication appears to be the dominant process that generates this superfamily. The transcriptome atlas revealed notable differential expression in either transcript abundance or expression patterns under normal growth conditions. This finding was consistent with the differential distribution of the cis-elements in the promoter region, and indicated wide functional divergence in this superfamily. Moreover, some critical amino acids that contribute to functional divergence and positive selection were detected. Finally, site model and branch-site model analysis of positive selection indicated that the soybean expansin gene superfamily is under strong positive selection, and that divergent selection constraints might have influenced the evolution of the four subfamilies.ConclusionThis study demonstrated that the soybean expansin gene superfamily has expanded through tandem and segmental duplication. Differential expression indicated wide functional divergence in this superfamily. Furthermore, positive selection analysis revealed that divergent selection constraints might have influenced the evolution of the four subfamilies. In conclusion, the results of this study contribute novel detailed information about the molecular evolution of the expansin gene superfamily in soybean.
Color change is an important event during fruit maturation in blueberry, usually depending on chlorophyll degradation and anthocyanin accumulation. miR156/SPL modules are an important group of regulatory hubs involved in the regulation of anthocyanin biosynthesis. However, little is known regarding the roles of miR156/SPLs in blueberry and chlorophyll metabolism during color change. In this study, a MIR156 gene (VcMIR156a) was experimentally identified in blueberry. Overexpression of VcMIR156a in tomato enhanced anthocyanin biosynthesis and chlorophyll degradation in the stem via altering pigment-associated gene expression. Further investigation indicated that the VcSPL12 transcript could be targeted by miR156, and they showed the reverse accumulation patterns during blueberry fruit development and maturation. Noticeably, VcSPL12 was highly expressed at green fruit stages, while VcMIR156a transcripts mainly accumulated at the white fruit stage when VcSPL12 was dramatically decreased, implying that VcMIR156a/VcSPL12 is a key regulatory hub during fruit coloration. Moreover, VcSPL12 decreased the expression of several anthocyanin biosynthetic and regulatory genes, and a Y2H assay indicated that VcSPL12 interacted with VcMYBPA1. Intriguingly, VcSPL12 significantly enhanced chlorophyll accumulation and altered the expression of several chlorophyll-associated genes. Additionally, the chloroplast ultrastructure was altered by VcMIR156a and VcSPL12. These findings provide a novel insight into the functional roles of miR156/SPLs in plants, especially blueberry fruit coloration.
MicroRNAs (miRNAs) have important effects on cancer occurrence and development by adjusting gene expression. The aim of the present study was to examine the role of miR-214 in papillary thyroid carcinoma cell proliferation and metastasis, and its molecular mechanisms. miR-214 was demonstrated to be markedly downregulated in papillary thyroid carcinoma tissues and cells compared with normal, and this was significantly associated with lymph node metastasis, tumor size and TNM stage. Upregulation of miR-214 significantly decreased cell proliferation, and promoted cell apoptosis and cell cycle arrest in papillary thyroid carcinoma cell lines in vitro. By contrast, downregulation of miR-214 resulted in the opposite effects. In addition, miR-214 mimics significantly decreased papillary thyroid carcinoma cell migration and invasion, which was correlated with decreased expression levels of matrix metallopeptidase (MMP)-2 and MMP-9. Restoration of miR-214 expression in papillary thyroid carcinoma cells decreased the activities associated with epithelial-mesenchymal transition (EMT). Furthermore, proteasome 26S subunit non-ATPase 10 (PSMD10) was predicted to be a target of miR-214. Experimental results demonstrated that miR-214 negatively regulated PSMD10 expression by targeting its 3′ untranslated region directly. Knockdown of PSMD10 reduced papillary thyroid carcinoma cell clone formation, migration and invasion, most likely by repressing glycogen synthase kinase (GSK)-3β/β-catenin and AKT signaling. Finally, a negative correlation was observed between the expression levels of miR-214 and PSMD10 in papillary thyroid carcinoma tissues. Taken together, these data suggested that miR-214 might be a candidate target for the treatment of papillary thyroid carcinoma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.