Marine mussels can develop hemeic and gonadal neoplasia in the natural environment. Associated with these diseases are the tumor suppressor (TS) p53 and the proto-oncogene ras coded proteins, both of which are highly conserved among molluscs and vertebrates. We report, for the first time, tissue-specific expression analysis of p53 and ras genes in Mytilus edulis by means of quantitative RT-PCR. A tissue-specific response was observed after 6 and 12 days exposure to a sublethal concentration of a model Polycyclic Aromatic Hydrocarbon (PAH), benzo(α)pyrene (B(α)P). This sublethal concentration (56 μg/L) was selected based on an integrated biomarker analysis carried out prior to gene expression analysis, which included a 'clearance rate' assay, histopathological analysis, and DNA strand break measurements. The results indicated that the selected concentration of B(α)P can lead to the induction of DNA strand breaks, tissue damage, and expression of tumor-regulating genes. Both p53 and ras are expressed in a tissue-specific manner, which collaborate with tissue-specific function in response to genotoxic stress. The integrated biological responses in Mytilus edulis strengthen the use of this organism to investigate the fundamental mechanism of development of malignancy in invertebrate which could be translated to other organisms including humans.
We used the marine bivalve (Mytilus galloprovincialis) to assess a range of biological or biomarker responses following exposure to a model-engineered nanoparticle, C fullerene, either alone or in combination with a model polycyclic aromatic hydrocarbon, benzo(α)pyrene [B(α)P]. An integrated biomarker approach was used that included: (i) determination of 'clearance rates' (a physiological indicator at individual level), (ii) histopathological alterations (at tissue level), (iii) DNA strand breaks using the comet assay (at cellular level) and (iv) transcriptional alterations of p53 (anti-oncogene) and ras (oncogene) determined by real-time quantitative polymerase chain reaction (at the molecular/genetic level). In addition, total glutathione in the digestive gland was measured as a proxy for oxidative stress. Here, we report that mussels showed no significant changes in 'clearance rates' after 1 day exposure, however significant increases in 'clearance rates' were found following exposure for 3 days. Histopathology on selected organs (i.e. gills, digestive glands, adductor muscles and mantles) showed increased occurrence of abnormalities in all tissues types, although not all the exposed organisms showed these abnormalities. Significantly, increased levels of DNA strand breaks were found after exposure for 3-days in most individuals tested. In addition, a significant induction for p53 and ras expression was observed in a tissue and chemical-specific pattern, although large amounts of inter-individual variability, compared with other biomarkers, were clearly apparent. Overall, biological responses at different levels showed variable sensitivity, with DNA strand breaks and gene expression alterations exhibiting higher sensitivities. Furthermore, the observed genotoxic responses were reversible after a recovery period, suggesting the ability of mussels to cope with the toxicants C and/or B(α)P under our experimental conditions. Overall, in this comprehensive study, we have demonstrated mussels as a suitable model marine invertebrate species to study the potential detrimental effects induced by possible genotoxicants and toxicants, either alone or in combinations at different levels of biological organisation (i.e. molecular to individual levels).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.