Aluminum alloy 7075 is one of the materials widely used in the manufacture of structural components used by aviation industries. High precision is required in producing the shapes of such components due to shape stability and dimensional accuracy being difficult to maintain throughout the different stages of manufacturing. In this work, an experimental study of the effect of VSR (Vibratory Stress Relief) on the deformation and residual stresses of aluminum alloy 7075 thin-walled components is presented. It was concluded that VSR improved the shape and size stability of the material to a significant level by relieving induced residual stresses in the thin-walled parts. Finally, more uniform residual stress distribution was obtained after the VSR treatment, compared to before the VSR treatment. This proved that VSR has a significant influence on improving the shape stability of the thin-walled aluminum alloy 7075 components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.