In this paper, taking the generalized synchronization problem of discrete chaotic systems as a starting point, a generalized synchronization method incorporating error-feedback coefficients into the controller based on the generalized chaos synchronization theory and stability theorem for nonlinear systems is proposed. Two discrete chaotic systems with different dimensions are constructed in this paper, the dynamics of the proposed systems are analyzed, and finally, the phase diagrams, Lyapunov exponent diagrams, and bifurcation diagrams of these are shown and described. The experimental results show that the design of the adaptive generalized synchronization system is achievable in cases in which the error-feedback coefficient satisfies certain conditions. Finally, a chaotic hiding image encryption transmission system based on a generalized synchronization approach is proposed, in which an error-feedback coefficient is introduced into the controller.
The physical implementation of the continuous-time memristor makes it widely used in chaotic circuits, whereas the discrete-time memristor has not received much attention. In this paper, the backward-Euler method is used to discretize the TiO2 memristor model, and the discretized model also meets the three fingerprints characteristics of the generalized memristor. The short period phenomenon and uneven output distribution of one-dimensional chaotic systems affect their applications in some fields, so it is necessary to improve the dynamic characteristics of one-dimensional chaotic systems. In this paper, a two-dimensional discrete-time memristor model is obtained by linear coupling of the proposed TiO2 memristor model and one-dimensional chaotic systems. Since the two-dimensional model has infinite fixed points, the stability of these fixed points depends on the coupling parameters and the initial state of the discrete TiO2 memristor model. Furthermore, the dynamic characteristics of one-dimensional chaotic systems can be enhanced by the proposed method. Finally, we apply the generated chaotic sequence to secure communication.
Discrete chaotic synchronization is crucial in secure communication. Studies on the design of a discrete chaotic system mainly depend on the system. Some discrete chaotic systems cannot synchronize as required. In this study, we proposed a new algorithm blended with error control for designing an inverse discrete chaotic synchronization system. Based on the eigenvalues of the synchronization error system, the coefficient matrix of the discrete chaotic system was inversely controlled for precisely controlling the positive Lyapunov exponents in the system. The results indicated that the error control-blended inverse discrete chaotic synchronization system had good chaotic characteristics and high reliability and flexibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.