Polyampholyte hydrogels (PA gels) are drawing great attention for their excellent mechanical properties including self-healing, high toughness and fatigue resistance.These mechanical performances are found to be attributed to the hierarchical structure of the PA gels, consisting of reversible ionic bonds at the 1 nm scale, permanent polymer network at the 10 nm scale, and bicontinuous phase network at the hundred nm scale. In this work, we systematically studied the phase network formation of these gels, aiming to answer the following three questions: (1) how the phase separation occurs? (2) what determines the phase structure? and (3) is this structure in thermal dynamically equilibrium or not? Our results show that, the phase separation occurs during dialysis of counterions from the gels and it is driven by the Coulombic and hydrophobic 2 interactions. The phase size d0 and the number of aggregated chains in a unit cell of phase structure n scale with the molecular weight of partial chain between permanent effective crosslinking Meff as d0 ~ Meff and n ~ Meff 2 , respectively. Chemical crosslinker and topological entanglement suppress phase separation while hydrophobic interaction favors phase separation. An intrinsic correlation between the polymer density difference () between two phases and d0 is observed, d0 2 , as a result of the competition between the driving force to induce phase separation and the resistance to suppress the phase separation. The phase separated structure is metastable, which is locally trapped by strong intermolecular interactions.
Tough and self-recoverable hydrogel membranes with micrometer-scale thickness are promising for biomedical applications, which, however, rarely be realized due to the intrinsic brittleness of hydrogels. In this work, for the first time, by combing noncovalent DN strategy and spin-coating method, we successfully fabricated thin (thickness: 5-100 µm), yet tough (work of extension at fracture: 10 5 -10 7 J m −3 ) and 100% self-recoverable hydrogel membranes with high water content (62-97 wt%) in large size (≈100 cm 2 ). Amphiphilic triblock copolymers, which form physical gels by self-assembly, were used for the first network. Linear polymers that physically associate with the hydrophilic midblocks of the first network, were chosen for the second network. The internetwork associations serve as reversible sacrificial bonds that impart toughness and self-recovery properties on the hydrogel membranes. The excellent mechanical properties of these obtained tough and thin gel membranes are comparable, or even superior to many biological membranes. The in vitro and in vivo tests show that these hydrogel membranes are biocompatible, and postoperative nonadhesive to neighboring organs. The excellent mechanical and biocompatible properties make these thin hydrogel membranes potentially suitable for use as biological or postoperative antiadhesive membranes.
The memory of our brain, stored in soft matter, is dynamic, and it forgets spontaneously to filter unimportant information. By contrast, the existing manmade memory, made from hard materials, is static, and it does not forget without external stimuli. Here we propose a principle for developing dynamic memory from soft hydrogels with temperature-sensitive dynamic bonds. The memorizing–forgetting behavior is achieved based on fast water uptake and slow water release upon thermal stimulus, as well as thermal-history-dependent transparency change of these gels. The forgetting time is proportional to the thermal learning time, in analogy to the behavior of brain. The memory is stable against temperature fluctuation and large stretching; moreover, the forgetting process is programmable. This principle may inspire future research on dynamic memory based on the nonequilibrium process of soft matter.
We investigate the fatigue resistance of chemically cross-linked polyampholyte hydrogels with a hierarchical structure due to phase separation and find that the details of the structure, as characterized by SAXS, control the mechanisms of crack propagation. When gels exhibit a strong phase contrast and a low cross-linking level, the stress singularity around the crack tip is gradually eliminated with increasing fatigue cycles and this suppresses crack growth, beneficial for high fatigue resistance. On the contrary, the stress concentration persists in weakly phase-separated gels, resulting in low fatigue resistance. A material parameter, λtran, is identified, correlated to the onset of non-affine deformation of the mesophase structure in a hydrogel without crack, which governs the slow-to-fast transition in fatigue crack growth. The detailed role played by the mesoscale structure on fatigue resistance provides design principles for developing self-healing, tough, and fatigue-resistant soft materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.