Apoptosis and DNA oxidative damage serve significant roles in the pathogenesis of steroid-induced femoral head necrosis. Vitamin E demonstrates anti-apoptotic and anti-oxidant properties. Therefore, the present study investigated the effects of vitamin E on osteocyte apoptosis and DNA oxidative damage in bone marrow hemopoietic cells at an early stage of steroid-induced femoral head osteonecrosis. Japanese white rabbits were randomly divided into three groups (steroid, vitamin E-treated, and control groups), each comprising 12 rabbits. Those in the steroid group (group S) were initially injected twice with an intravenous dose of 100 µg/kg Escherichia coli endotoxin, with a 24 h interval between the two injections, and then with an intramuscular dose of 20 mg/kg methylprednisolone, three times at intervals of 24 h in order to establish a rabbit model of osteonecrosis. The vitamin E treated group (group E) received the same treatment as group S, and were administered 0.6 g/kg/d vitamin E daily from the beginning of modeling. The control group (group C) was injected with normal saline at the equivalent dosage and times as the aforementioned two groups. Two time points, weeks 4 and 6 following the completion of modeling, were selected. Osteonecrosis was verified by histopathology with hematoxylin-eosin staining. The apoptosis rate of osteonecrosis was analyzed by terminal deoxynucleotidyl transferase dUTP nick end labeling assay. The apoptosis expression levels of caspase-3 and B-cell lymphoma 2 (Bcl-2), and DNA oxidative damage of bone marrow hematopoietic cells were analyzed by immunohistochemistry. At weeks 4 and 6 following the completion of modeling, the vacant bone lacunae rates of group E were 15.87±1.97 and 25.09±2.67%, respectively, lower than the results of 20.02±2.21 and 27.79±1.39% for group S; and the osteocyte apoptosis indexes of group E were 20.99±2.95 and 33.93±1.62%, respectively, lower than the results of 26.46±3.37 and 39.90±3.74% from group S. In addition, the Bcl-2 expression at week 4 in the femoral head tissues of group E was higher compared with group S; and the proportion of Bcl-2-positive cells of group E was 9.81±1.01%, higher compared with group S at 8.26±1.13%. The caspase-3 staining data at week 4 in femoral head tissues demonstrated that in the 12 femoral heads of group S, four were negative (32%) and eight were positive (68%); in group E, five were negative (45%) and seven were positive (55%); and in group C, 11 were negative (95%) and one was positive (5%). In addition, the DNA oxidative damage rate at week 4 in the bone marrow hemopoietic cells of group E was (7.24±1.44%), lower compared with group S (11.80±1.26%), and higher compared with group C (5.75±1.47%). Vitamin E is effective in intervening in apoptosis through decreasing caspase-3 expression and upregulating Bcl-2 expression, and by alleviating DNA oxidative damage in bone marrow hemopoietic cells at the early stage of steroid-induced femoral head necrosis in rabbit models.
Our study aimed to find out the most effective mode for chondrogenic differentiation based on time, dose and culture method. ADSCs were cultured and identified by CD44, CD49d, and CD106 immumohistochemical staining method, and their differentiation potential to chondrocyte were detected by Alizarin red staining. ADSCs induced by different concentrations of GDF-5 for chondrogenic differentiation were detected by blue and toluidine blue staining and collagen type II and X immumohistochemical staining. The expression of collagen I, II, X and aggrecan gene in GDF-induced ADSCs cultured in 2- and 3-dimension was identified by real-time PCR. Cell microstructure and proliferation in three-dimensional scaffolds at day 7, 14, 21 and 28 were analyzed by scanning electron microscopy and MTS assay. The ADSCs were successfully identified by CD44 and CD49d, and their differentiation potential was detected by Alizarin red staining. Real-time PCR showed that collagen and aggrecan were expressed at high levels in 100 or 200 ng/mL GDF-5 treated cells. The collagen types (I, II) and aggrecan genes were higher expressed in GDF-5 induced scaffold group than that in monolayer group. MTS showed that the cell counts were not significantly different among different treated time. Both collagen type II and aggrecan gene were highly expressed at day 14, while collagen types I and X gene expressions peaked at day 21 and 28. The 100 ng/mL GDF-5 is effective and cost-effective for chondrogenic differentiation when cultured at day 14 in vitro under three-dimensional culture conditions.
Background Depression can seriously affect the quality of life of type 2 diabetes mellitus (T2DM) patients after stroke. However, there were still no objective methods to diagnose T2DM patients with poststroke depression (PSD). Therefore, we conducted this study to deal with this problem. Methods Gas chromatography-mass spectroscopy (GC-MS)-based metabolomics profiling method was used to profile the urinary metabolites from 83 nondepressed T2DM patients after stroke and 101 T2DM patients with PSD. The orthogonal partial least-squares discriminant analysis was conducted to explore the metabolic differences in T2DM patients with PSD. The logistic regression analysis was performed to identify the optimal and simplified biomarker panel for diagnosing T2DM patients with PSD. The receiver operating characteristic curve analysis was used to assess the diagnostic performance of this biomarker panel. Results In total, 23 differential metabolites (7 decreased and 16 increased in T2DM patients with PSD) were found. A panel consisting of pseudouridine, malic acid, hypoxanthine, 3,4-dihydroxybutyric acid, fructose and inositol was identified. This panel could effectively separate T2DM patients with PSD from nondepressed T2DM patients after stroke. The area under the curve was 0.965 in the training set and 0.909 in the validation set. Meanwhile, we found that the galactose metabolism was significantly affected in T2DM patients with PSD. Conclusion Our results could be helpful for future development of an objective method to diagnose T2DM patients with PSD and provide novel ideas to study the pathogenesis of depression.
Background Post-stroke depression (PSD) is one of the most common psychiatric diseases afflicting stroke survivors. This study was conducted to assess the efficacy of ginkgo biloba extract as augmentation of venlafaxine in treating PSD. Methods The included PSD patients were randomly assigned into the experiment group (receiving ginkgo biloba extract plus venlafaxine) and control group (receiving venlafaxine alone). The treatment was continued for eight weeks. The Hamilton Depression Rating Scale (HDRS) and the Self-rating Depression Scale (SDS) were used to assess the depressive symptoms. The National Institutes of Health Stroke Scale (NIHSS) was used to assess the neurological defect, and the Activities of Daily Living (ADL) was used to assess recovery of abilities of patients after stroke. Meanwhile, the levels of serum 5-hydroxytryptamine (5-HT) and brain-derived neurotrophic factor (BDNF) were measured before and after treatment. The dose of venlafaxine used and adverse events were also recorded. Results Each group had 40 PSD patients. After treatment, the depressive symptoms, neurological defect and living function were significantly improved in both groups. But the patients receiving ginkgo biloba extract plus venlafaxine had the significantly lower average HDRS score ( p =0.0008), SDS score ( p <0.00001), NIHSS score ( p =0.00001), and higher average ADL score ( p =0.0005). Meanwhile, compared to the control group, patients in the experiment group had the significantly higher 5-HT ( p <0.00001) level and BDNF level ( p <0.00001), needed lower dose of venlafaxine ( p =0.007), and experienced fewer adverse events. Conclusion These results demonstrated that the ginkgo biloba extract was a good augmentation of venlafaxine in treating PSD and should be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.