High levels of VEGF and leptin are strongly linked to worse prognosis of breast cancer. Leptin signalling up-regulates VEGF in human and mouse mammary tumor cells (MT), but the specific molecular mechanisms are largely unknown. Pharmacologic and genetic approaches were used to dissect the mechanism of leptin regulation of VEGF protein and mRNA in MT (4T1, EMT6 and MMT). A series of VEGF-promoter Luc-reporters (full-length and transcription factor-binding deletions) were transfected into MT to analyze leptin regulation of VEGF transcription. Deletion analysis of VEGF promoter and RNA knockdown shows that HIF-1α and NFκB are essentials for leptin regulation of VEGF. Leptin activation of HIF-1α was mainly linked to canonic (MAPK, PI-3K) and non-canonic (PKC, JNK and p38 MAP) signalling pathways. Leptin non-canonic signalling pathways (JNK, p38 MAP and to less extent PKC) were linked to NFκB activation. SP1 was involved in leptin regulation of VEGF in 4T1 cells. AP1 was not involved and AP2 repressed leptin-induced increase of VEGF. Overall, these data suggest that leptin signalling regulates VEGF mainly through HIF-1α and NFκB. These results delineate a comprehensive mechanism for leptin regulation of VEGF in MT. Disruption of leptin signalling could be used as a novel way to treat breast cancer.
Introduction We have shown previously that treatment with pegylated leptin peptide receptor antagonist 2 (PEG-LPrA2) reduced the expression of vascular endothelial growth factor (VEGF), vascular endothelial growth factor receptor type 2 (VEGFR2) and growth of 4T1-breast cancer (BC) in syngeneic mice. In this investigation, PEG-LPrA2 was used to evaluate whether the inhibition of leptin signaling has differential impact on the expression of pro-angiogenic and pro-proliferative molecules and growth of human estrogen receptor-positive (ER + ) and estrogen receptor-negative (ER -) BC xenografts hosted by immunodeficient mice.
Perception of segregated sources is essential in navigating cluttered acoustic environments. A basic mechanism to implement this process is the temporal coherence principle. It postulates that a signal is perceived as emitted from a single source only when all of its features are temporally modulated coherently, causing them to bind perceptually. Here we report on neural correlates of this process as rapidly reshaped interactions in primary auditory cortex, measured in three different ways: as changes in response rates, as adaptations of spectrotemporal receptive fields following stimulation by temporally coherent and incoherent tone sequences, and as changes in spiking correlations during the tone sequences. Responses, sensitivity and presumed connectivity were rapidly enhanced by synchronous stimuli, and suppressed by alternating (asynchronous) sounds, but only when the animals engaged in task performance and were attentive to the stimuli. Temporal coherence and attention are therefore both important factors in auditory scene analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.