Mosaic trisomy 12 is a rare anomaly, and only 9 cases of live births with this condition have been reported in the literature. The clinical phenotype is variable, including neuropsychomotor developmental delay, congenital heart disease, microcephaly, cutaneous spots, facial asymmetry, prominent ears, hypotonia, retinopathy, and sensorineural hearing loss. A 2-year-old female presented with neuropsychomotor developmental delay, prominent forehead, dolichocephaly, patchy skin pigmentation, and unexpected overgrowth at birth. Cytogenetic analysis of her peripheral blood showed normal results, suggesting the presence of a chromosomal alteration in other tissues. Further studies using G-banding and FISH performed on fibroblasts from both hyper- and hypopigmented regions identified a 47,XX,+12/46,XX karyotype. To the best of our knowledge, no patients with mosaic trisomy 12 associated with overgrowth have been reported to date. Congenital overgrowth and neonatal overgrowth have been frequently linked to Pallister-Killian syndrome (PKS; OMIM 601803). This case suggests the possibility of an association of genes present in the 12p region with fetal overgrowth, considering that chromosomal duplications could lead to an increase in the production of aberrant transcripts and disturbing gene dosage effects. This case highlights the importance of cytogenetic analysis in different tissues to provide relevant information to the specific genotype/phenotype correlation.
Background: Bloom syndrome (BS) is a rare autosomal recessive chromosome instability disorder. The main clinical manifestations are growth deficiency, telangiectasic facial erythema, immunodeficiency, and increased risk to develop neoplasias at early age. Cytogenetic test for sister chromatid exchanges (SCEs) is used as a diagnostic marker for BS. In addition, most patients also present mutations in the BLM gene, related to defects in the DNA repair mechanism. However, the molecular mechanism behind the pathogenicity of BS is still not completely understood. Methods: We describe two patients confirmed with BS by SCE and molecular analysis. Also, we performed the gene expression profile by the RNA-seq methodology in mRNA transcripts for differential gene expression analysis using as a biological condition for comparison BS versus health controls. SUPPORTING INFORMATIONAdditional supporting information may be found online in the Supporting Information section.
Background Cri du chat syndrome (CdCS) is a rare syndrome caused by a partial or complete deletion of the short arm of chromosome 5 (5p‐). The main clinical features include a high‐pitched cry, facial asymmetry, microcephaly, round face at birth, epicanthal folds, hypotonia, delayed growth and development. Methods We studied 14 Brazilian patients with CdCS using genomic array in order to better define the 5p breakpoints and recognize copy number variations (CNVs) that contribute to clinical manifestations associated with the syndrome. Results Array confirmed terminal deletions in 13 patients and an interstitial deletion in one patient. It was also possible to map the breakpoints and associate a genomic region of 4.7 Mb to the development of head circumference and cat‐like cry. We also found other CNVs concomitant to the 5p deletion including a 9p duplication, a 17q deletion, and a 22q deletion in three different patients. Conclusion With advancements of molecular cytogenomic methods in the last two decades, it was possible to evidence cryptic alterations and improve the genotype–phenotype correlation. In this work, we describe a new genomic region associated with microcephaly and cat‐like cry and highlight the importance of precise delineation of 5p deletion breakpoints and detection of other CNVs in CdCS patients to improve genotype–phenotype correlation to perform a complete clinical and molecular diagnosis.
<b><i>Introduction:</i></b> Cri-du-chat syndrome is generally diagnosed when patients present a high-pitched cry at birth, microcephaly, ocular hypertelorism, and prominent nasal bridge. The karyotype is useful to confirm deletions in the short arm of chromosome 5 (5p–) greater than 10 Mb. In cases of smaller deletions, it is necessary to resort to other molecular techniques such as fluorescence in situ hybridization, multiplex ligation-dependent probe amplification (MLPA) or genomic array. <b><i>Case Presentation:</i></b> We report a family with an atypical deletion in 5p (mother and 2 children) and variable phenotypes compared with the literature. We applied a P064 MLPA kit to evaluate 5p– in the mother and the 2 children, and we used the Infinium CytoSNP-850K BeadChip genomic array to evaluate the siblings, an 11-year-old boy and a 13-year-old girl, to better define the 5p breakpoints. Both children presented a high-pitched cry at birth, but they did not present any of the typical physical features of 5p– syndrome. The MLPA technique with 5 probes for the 5p region revealed that the patients and their mother presented an atypical deletion with only 4 probes deleted (<i>TERT</i>_ex2, <i>TERT</i>_ex13, <i>CLPTM1L</i>, and <i>IRX4</i>). The genomic array performed in the siblings’ samples revealed a 6.2-Mb terminal deletion in 5p15.33p15.32, which was likely inherited from their mother, who presented similar molecular features, seen in MLPA. <b><i>Discussion:</i></b> The sparing of the <i>CTNND2</i> gene, which is associated with cerebral development, in both siblings may explain why these 2 patients had features such as better communication skills which most patients with larger 5p deletions usually do not present. In addition, both patients had smaller deletions than those found in patients with a typical 5p– phenotype. This report demonstrates the utility of genomic arrays as a diagnostic tool to better characterize atypical deletions in known syndromes such as 5p– syndrome, which will allow a better understanding of the genotype-phenotype correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.