This study was conducted to investigate the effects of different additives on the fermentation quality, nutrient composition, bacterial communities, and metabolic profiles of the silage of hybrid Pennisetum. The experiment was conducted using five treatments, i.e., CK, control group, MA, 1% malic acid of fresh matter (FM) basis, GL, 1% glucose of FM basis, CE, 100 U/g FM cellulase, and BS, 106 cfu/g FM Bacillus subtilis, with six replicates each treatment. After a 120-day fermentation, 30 silage packages were opened for subsequent determination. As a result, all four additives had positive effects on the fermentation quality and nutrient composition of the silage of hybrid Pennisetum. The high-throughput sequencing of V3–V4 regions in 16S rRNA was performed, and results showed that Firmicutes and Proteobacteria were the dominant phyla and that Aquabacterium and Bacillus were the dominant genera. MA, GL, CE, and BS treatment resulted in 129, 21, 25, and 40 differential bacteria, respectively. The four additives upregulated Bacillus smithii but downregulated Lactobacillus rossiae. Metabolic profiles were determined by UHPLC-Q/TOF-MS technology and the differential metabolites caused by the four additives were 47, 13, 47, and 18, respectively. These metabolites played antioxidant, antibacterial, and anti-inflammatory functions and involved in pathways, such as the citrate cycle, carbon fixation in photosynthetic organisms, and glyoxylate and dicarboxylate metabolism. In conclusion, silage additives promoted fermentation quality and nutrient composition by altering bacterial communities and metabolic profiles. This study provided potential biomarkers for the improvement of silage quality.
Hybrid Pennisetum (HP) is a perennial herb with a high yield and high quality, which makes it valuable for research as feed for herbivores. In order to make better use of hybrid Pennisetum as feed, this study studied the effects of cellulase (CE), Lactobacillus plantarum (LP), sucrose (SU), and their mixtures on fermentation parameters, chemical composition, and the bacterial community of hybrid Pennisetum silage. The experiment was divided into 7 treatments, silage treatment, and its abbreviation: CON (control group), CE (100 U/g FM cellulase), LP (1 × 106 cfu/g FM Lactobacillus plantarum), SU (1% FM sucrose), CE+LP (100 U/g FM cellulase + 1 × 106 cfu/g FM Lactobacillus plantarum), CE+SU (100 U/g FM cellulase + 1% FM sucrose), and LP+SU (1 × 106 cfu/g FM Lactobacillus plantarum + 1% FM sucrose). The silage bag was opened on the 60th day of ensilage for subsequent determination. The addition of CE and LP increased lactic acid content (p > 0.05). The pH and acetic acid of CE and LP were lower than CON (p < 0.05), and the crude protein content of CE was higher than CON. Cellulase and Lactobacillus plantarum can improve the quality of hybrid Pennisetum silage. Compared with Lactobacillus plantarum and sucrose, cellulase has better nutrition preservation and the ability to inhibit protein hydrolysis. 16S rRNA analysis showed that the dominant phyla were Fimicutes and Proteobacteria, and the dominant genera were Lactobacillus and Weissella. The changes in fermentation parameters and chemical components of hybrid Pennisetum silage caused by cellulase, Lactobacillus plantarum, sucrose, and their mixture may be the result of bacterial community changes.
The purpose of the experiment was to study the effects of different concentrations of Lactobacillus plantarum (LP) and Bacillus licheniformis (BL) on the quality of hybrid Pennisetum (HP) silage. The experiment consisted of five treatment groups. The control group did not use additives, and the experimental groups were added with LP or BL of 1 × 105 cfu/g fresh weight (FW) and 1 × 107 cfu/g FW, respectively. The results showed that LP and BL could increase the in vitro fermentation gas production and reduce the ammonia nitrogen (AN) content in HP silage. Water-soluble carbohydrates (WSC), lactic acid (LA) content, and gas production in the LP group were positively correlated with LP addition, and acetic acid (AA) was negatively correlated with addition. The content of WSC and LA in the LP7 group was significantly higher than that in the control group (p < 0.05), and AA was lower than that in the control group (p > 0.05). Dry matter (DM), crude protein (CP), and gas production were negatively correlated with the addition of BL, while acid detergent fiber (ADF) content was positively correlated with the addition of BL. Furthermore, in the above indicators, the BL5 group reached a significant level with the control group (p < 0.05). The results of 16sRNA showed that the use of LP and BL could increase the relative abundance of Lactobacillus and decrease the relative abundance of Weissella in HP silage compared with the control group. In conclusion, LP and BL can significantly improve the quality of HP silage. The LP7 group and the BL5 group have the best silage effect. From the perspective of gas production in in vitro fermentation, the LP7 group had stronger fermentability and higher nutritional value.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.