Somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) by defined factors. However, the low efficiency and slow kinetics of the reprogramming process have hampered progress with this technology. Here we report that a natural compound, vitamin C (Vc), enhances iPSC generation from both mouse and human somatic cells. Vc acts at least in part by alleviating cell senescence, a recently identified roadblock for reprogramming. In addition, Vc accelerates gene expression changes and promotes the transition of pre-iPSC colonies to a fully reprogrammed state. Our results therefore highlight a straightforward method for improving the speed and efficiency of iPSC generation and provide additional insights into the mechanistic basis of the reprogramming process.
Summary Stem cells are considered to be one of the greatest potential treatments to cure degenerative diseases. Stem cells injection for knee osteoarthritis (OA) is still a relatively new treatment and has not yet gained popularity. So, the effectiveness, safety and potential of mesenchymal stem cells (MSCs) for knee OA treatment is worthy to be explored. Explore the effectiveness and safety of mesenchymal stem cells (MSCs) in the treatment of knee osteoarthritis. We collected clinical trials using MSCs as treatment for knee OA (before April 2019), including randomized controlled trials (RCTs), retrospective studies and cohort studies. We searched PubMed, EMBASE, Cochrane Library, Web of Science and the ClinicalTrials.gov with keywords (Mesenchymal stem cells [MSCs], Knee osteoarthritis, Effectiveness and Safety), and then performed a systematic review and cumulative metaanalysis of all RCTs and retrospective comparative studies. To evaluate the effectiveness and safety of MSC in knee OA treatment, we applied visual analog scale score, Western Ontario and McMaster Universities Osteo-arthritis Index and adverse events. We included 15 RCTs, two retrospective studies and two cohort studies including a total of 584 knee OA patients in this study. We demonstrated that MSC treatment could significantly decrease visual analog scale in a 12-month follow-up study compared with controls (p < 0.001). MSC therapy also showed significant decreases in Western Ontario and McMaster Universities Osteoarthritis Index scores after the 6-month follow-up (p < 0.001). MSC therapy showed no difference compared with controls (p > 0.05) in adverse events. We suggest that MSC therapy could serve as an effective and safe therapy for clinical application in OA treatment. The translational potential of this article This study provided the best available evidence and a wider perspective to MSCs application in the management of knee OA. MSCs therapy will have great translational potential in the clinical treatment of various degenerative diseases once optimum formula and explicit target population are identified.
The purpose of this study was to investigate in vivo biocompatibility and osteogenesis as well as degradability of the porous strontium-doped calcium polyphosphate (SCPP) scaffolds as a biomaterial for bone substitute applications. The evaluation was performed on a rabbit model over a period of 16 weeks by histology combined with image analysis, X-ray microradiography and immunohistochemistry methods. The histological and X-ray microradiographic results showed that the SCPP scaffold exhibited good biocompatibility and extensive osteoconductivity with host bone. Moreover, a significant more bone formation was observed in the SCPP group compared with that in the CPP group, especially at the initial stage after implantation. New bone volumes (NBVs) of the SCPP group determined at week 4, 8 and 16 were 14, 27 and 45%, respectively. Accordingly, NBVs of the CPP group were 10, 19 and 40%. Immunohistochemical results revealed that both the expression of collagen type I and bone morphogenetic proteins in the SCPP group were higher than that in the CPP group, which might be associated with the release of strontium ions during the implantation. In addition, during 16 weeks implantation the SCPP scaffold exhibited similar degradability with the CPP scaffold in vivo. Both scaffolds showed the greatest degradation rate for the first 4 weeks, and then the degradation rate gradually decreased. The results presented in this study demonstrated that SCPP scaffold can be considered as a biocompatible material, making it attractive for bone substitute application purposes.
ObjectiveDiabetic kidney disease (DKD) is the most common chronic kidney disease (CKD) and has the highest prevalence of end-stage kidney disease (ESKD) globally, owing mostly to the rise in Type 2 diabetes mellitus (T2DM) correlated with obesity. Current research suggested that the immune response and inflammation may play a role in the pathophysiology of T2DM. The systemic immune-inflammation index (SII) is a novel and integrated inflammatory biomarker that has not yet been linked to DKD. We aimed to identify the potential relationship between SII and DKD.MethodsIn the National Health and Nutrition Examination Survey (NHANES) between 2011 and 2018, the current cross-sectional study was conducted among adults with T2DM. SII was calculated as the platelet count × neutrophil count/lymphocyte count. DKD was diagnosed with impaired glomerular filtration rate (< 60 mL/min/1.73 m2 assessed by using the Chronic Kidney Disease Epidemiology Collaboration algorithm), albuminuria (urine albumin to creatinine ratio ≥ 30 mg/g), or both in T2DM patients. To investigate the independent association between SII and DKD, weighted univariate and multivariable logistic regression analyses and subgroup analyses were performed.ResultsThe study involved 3937 patients in total, of whom 1510 (38.4%) had DKD for the diagnosis. After adjustment for covariates, multivariable logistic regression revealed that a high SII level was associated with increased likelihood of DKD (OR = 1.42, 95% CI: 1.10-1.83, P = 0.01). Subgroup analyses and interaction tests revealed that age, gender, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), body mass index (BMI), hypertension, hyperlipidemia, anti-inflammation therapy (yes or no), metformin use (yes or no), and insulin use (yes or no) had no significant dependence on this positive relationship (all p for interaction >0.05).ConclusionsOur results indicate that the higher SII level is associated with DKD in T2DM patients. The SII could be a cost-effective and straightforward approach to detecting DKD. This needs to be verified in further prospective investigations.
Background Despite increasing clinical investigations emphasizing the safety of mesenchymal stem cell (MSC) therapy in different populations with different diseases, no article has recently reviewed the adverse events in all populations. Aim To evaluate the safety of MSC therapy in all populations receiving MSC therapy and explore the potential heterogeneities influencing the clinical application of MSCs. Methods The PubMed, Embase, Web of Science and Scopus databases were searched from onset until 1 March 2021. Results All adverse events are displayed as odds ratios (ORs) and 95% CIs (confidential intervals). In total, 62 randomized clinical trials were included that enrolled 3546 participants diagnosed with various diseases (approximately 20 types of diseases) treated with intravenous or local implantation versus placebo or no treatment. All studies were of high quality, and neither serious publication bias nor serious adverse events (such as death and infection) were discovered across the included studies. The pooled analysis demonstrated that MSC administration was closely associated with transient fever (OR, 3.65, 95% CI 2.05–6.49, p < 0.01), administration site adverse events (OR, 1.98, 95% CI 1.01–3.87, p = 0.05), constipation (OR, 2.45, 95% CI 1.01–5.97, p = 0.05), fatigue (OR, 2.99, 95% CI 1.06–8.44, p = 0.04) and sleeplessness (OR, 5.90, 95% CI 1.04–33.47, p = 0.05). Interestingly, MSC administration trended towards lowering rather than boosting the incidence rate of arrhythmia (OR, 0.62, 95% CI 0.36–1.07, p = 0.09). Conclusions Conclusively, MSC administration was safe in different populations compared with other placebo modalities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.