Poly(ethylene oxide) (PEO) is a promising solid electrolyte material for solidstate lithium-sulfur (Li-S) batteries, but low intrinsic ionic conductivity, poor mechanical properties, and failure to hinder the polysulfide shuttle effect limits its application. Herein, a polymer of intrinsic microporosity (PIM) is synthesized and applied as an organic framework to comprehensively enhance the performance of PEO by forming a composite electrolyte (PEO-PIM). The unique structure of PIM-1 not only enhances the mechanical strength and hardness over the PEO electrolyte by an order of magnitude, increasing stability toward the metallic lithium anode but also increases its ionic conductivity by lowering the degree of crystallinity. Furthermore, the PIM-1 is shown to effectively trap lithium polysulfide species to mitigate against the detrimental polysulfide shuttle effect, as electrophilic 1,4-dicyanooxanthrene functional groups possess higher binding energy to polysulfides. Benefiting from these properties, the use of PEO-PIM composite electrolyte has achieved greatly improved rate performance, long-cycling stability, and excellent safety features for solid-state Li-S batteries. This methodology offers a new direction for the optimization of solid polymer electrolytes.
When a thin anodic aluminum oxide ͑AAO͒ film on an Al substrate is uniformly coated with carbon by chemical vapor deposition, the saturation of interference color is substantially enhanced and, as a result, the coated AAO film exhibits a brilliant color. Such remarkable saturation enhancement is predominantly due to the carbon deposited on the inner walls of nanochannels of the AAO film, which efficiently screens the reflected light from AAO-Al interface. The brilliant carbon-coated AAO film is useful for weather-resistant decorative purposes and holds promise as an effective broadband optical limiter for nanosecond laser pulse.
In order to prepare electrodes with high mass loading and areal capacities, the key issue is to achieve depolarization for both ion and electron transfer on the electrode material surface. In this work, through copolymerization of xanthan gum (XG) and amorphophallus konjac gum (KG) followed by an ice‐templating method, aligned electrodes with high areal mass loading of active materials are prepared. In addition to firmly holding active materials together, the prepared KG–XG copolymer also facilitates improved effective porosity as well as homogeneous dispersion of conductive agents (i.e., CNTs). Consequently, with minimum inactive components (i.e., binder and conductive agents), the proposed electrode structure delivers good cycling stability and rate capability under high areal loading (as high as 200 mg cm−2). The excellent electrochemical performance can be attributed to the unique aligned structure where the robust conductive network provides an efficient electron and lithium‐ion pathway, and the homogenous porosity is beneficial for the electrolyte percolation, hence the reduced polarization during charge transfer. In addition, this electrode preparation method is found to be universal as it is suitable for various types of anode and cathode materials.
High Li + conductivity, good interfacial compatibility and high mechanical strength are desirable for practical utilization of all-solid-state electrolytes. In this study, by introducing Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 (LLZTO) with surface defects into poly(ethylene oxide) (PEO), a composite solid electrolyte (OV-LLZTO/ PEO) is prepared. The surface defects serve as anchoring points for oxygen atoms of PEO chains, forming a firmly bonded polymer-ceramic interface. This bonding effect effectively prevents the agglomeration of LLZTO particles and crystallization of PEO domains, forming a homogeneous electrolyte membrane exhibiting high mechanical strength, reduced interfacial resistance with electrodes as well as improved Li + conductivity. Owing to these favorable properties, OV-LLZTO/PEO can be operated under a high current density (0.7 mA cm −2 ) in a Li-Li symmetric cell without short circuit. Above all, solidstate full-cells employing OV-LLZTO/PEO deliver state-of-the-art rate capability (8 C), power density and capacity retention. As a final proof of concept study, flexible pouch cells are assembled and tested, exhibiting high cycle stability under 5 C and excellent safety feature under abusive working conditions. Through manipulating the interfacial interactions between polymer and inorganic electrolytes, this study points out a new direction to optimizing the performance of all-solid-state batteries.
Polyethylene oxide (PEO) based polymer electrolytes have been widely used in solid-state lithium batteries (SSBs) owing to their high solubility of lithium salt and favourable ionic conductivity, flexibility for improved...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.