In this paper, asymmetric biconical fiber tapers (ABFTs) for in-fiber Mach-Zehnder interferometers (IFMZIs) are proposed and analyzed to enhance the interference effect. The proposed ABFT-IFMZIs are fabricated, tested, and demonstrated in applications of single-frequency (SF) emissions when incorporated into an all-fiber laser cavity as the frequency selecting component. In comparison with the traditional IFMZIs composed of all symmetric biconical fiber tapers (SBFTs), higher average transmittance and fringe contrast have been demonstrated with the ABFT-based IFMZIs. When applied to the SF fiber laser emission, lower pump threshold and higher slope efficiency have also been confirmed with the ABFT-IFMZI device. The theoretical and experimental results have indicated that the interference effect of IFMZIs can indeed be improved by the designated asymmetry of conical taper angles in ABFTs that can offer an extra flexibility in fiber taper design, fabrication, and applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.