Resveratrol (RES) protects myocardial cells from hypoxia/reoxygenation (H/R)-caused injury. However, the mechanism of this effect has not been clarified. Thus, in this study, we aimed to determine whether RES attenuates H/R-induced cell necroptosis by inhibiting the tumor necrosis factor-alpha (TNF-α)/receptor-interacting protein kinase 1 (RIP1)/RIP3/mixed-lineage kinase domain-like (MLKL) signaling pathway. Rat myocardial ischemia/reperfusion (I/R) models and H/R-injured cell models were constructed. Our study showed that myocardial H/R injury significantly increased the levels of TNF-α, RIP1, RIP3, and p-MLKL/MLKL by western blot analysis. Cell viability assay and 4,6-dianmidino-2-phenylindole (DAPI)–propidium iodide staining showed that the cell viability was decreased, and necroptosis was increased after myocardial H/R injury. The expressions of TNF-α, RIP1, RIP3, and p-MLKL/MLKL in H/R myocardial cells treated with different concentrations of RES were significantly downregulated. In addition, we also found that the cell viability was increased and necroptosis was decreased in dose-dependent manners when H/R-injured cells were treated with RES. In addition, the enhanced effect of TNF-α on necroptosis in myocardial H/R-injured cells was improved by RES, and the effect of RES was confirmed in vivo in I/R rats. This study also showed that RES suppresses necroptosis in H9c2 cells, which may occur through the inhibition of the TNF-α/RIP1/RIP3/MLKL signaling pathway. Our data suggest that necroptosis is a promising therapeutic target and may be a promising therapeutic target for the treatment of myocardial I/R injury.
The infection of Apple mosaic virus (ApMV) can severely damage the cellular structure of apple leaves, leading to a decrease in leaf chlorophyll content (LCC) and reduced fruit yield. In this study, we propose a novel method that utilizes hyperspectral imaging (HSI) technology to non-destructively monitor ApMV-infected apple leaves and predict LCC as a quantitative indicator of disease severity. LCC data were collected from 360 ApMV-infected leaves, and optimal wavelengths were selected using competitive adaptive reweighted sampling algorithms. A high-precision LCC inversion model was constructed based on Boosting and Stacking strategies, with a validation set Rv2 of 0.9644, outperforming traditional ensemble learning models. The model was used to invert the LCC distribution image and calculate the average and coefficient of variation (CV) of LCC for each leaf. Our findings indicate that the average and CV of LCC were highly correlated with disease severity, and their combination with sensitive wavelengths enabled the accurate identification of disease severity (validation set overall accuracy = 98.89%). Our approach considers the role of plant chemical composition and provides a comprehensive evaluation of disease severity at the leaf scale. Overall, our study presents an effective way to monitor and evaluate the health status of apple leaves, offering a quantifiable index of disease severity that can aid in disease prevention and control.
During the last several years, with the emergence of non-fullerene Y-series star molecular acceptors, the power conversion efficiency of single-junction organic solar cells has exceeded 19%. However, the relatively poor stability of the devices under different operating conditions seriously restricts its commercialization. Therefore, more and more researches are focused on the causes of devices degradation of organic solar cells and how to improve the stability of organic solar cells (OSCs). OSCs have complex active layer materials and different device structure. It is still not clear about the performance and decay process of organic solar cells. Most of the previous reviews on OSC stability are based on external factors such as moisture, oxygen, light and heat, and lack of explanation of device degradation process. In this review, the literatures of OSCs device degradation in recent years are reviewed and several factors that cause performance degradation in OSCs devices are summarized. Firstly, the device performance attenuation caused by the change of active layer, the photooxidation reaction caused by chemical molecule changes, photochemical reaction, and device aging process, and the morphological changes in active layers caused by photothermal stresses and their effects on device performance are reviewed. Then, the influence of the changes at the interface and transporting layer degradation is introduced. Finally, the multi-directional strategies for improving the stability of OSCs are stated and how to improve the stability of organic solar cells is suggested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.