Cu3(4-chloropyrazolate)3 is presented herein to exhibit unprecedented room-temperature white phosphorescence by modulating monomeric blue and excimeric yellow phosphorescence.
A simple method for the efficient synthesis of highly substituted pyrido[1,2-a]quinolinium- and quinolizino[3,4,5,6-ija]quinolinium-based polyheteroaromatic compounds via rhodium(III)-catalyzed multiple C-H activation annulation reactions has been developed. Moreover, some of the quinolizino[3,4,5,6-ija]quinolinium salts exhibit intense fluorescence and have potential application in optoelectronic materials.
Phosphorescence/fluorescence hybrid white organic light-emitting diodes (OLEDs) are highly appealing for solid-state lighting. One major challenge is how to fully utilize the electrically generated excitons for light output. Herein, an efficient strategy to realize full exciton radiation is successfully revealed by a judicious molecular design and suitable device engineering. A blue host emitter TP-PPI is designed and synthesized, exhibiting a near 100% photoluminescence quantum yield and a high triplet energy level, enabling high-performance blue fluorescence and sensitization of a yellow phosphorescent dopant. Full exciton radiation in hybrid white OLEDs is demonstrated with a single emitting layer formed by doping a yellow phosphor (PO-01) into TP-PPI. Near 100% exciton utilization and state-of-the-art external quantum efficiency of 27.5% are achieved with the high-efficiency blue-emitting host and an electron-trap engineered device architecture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.