Background-Safety and efficacy limit currently available atrial fibrillation (AF) therapies. We hypothesized that atrial gene transfer would allow focal manipulation of atrial electrophysiology and, by eliminating reentry, would prevent AF. Methods and Results-In a porcine AF model, we compared control animals to animals receiving adenovirus that encoded KCNH2-G628S, a dominant negative mutant of the I Kr potassium channel ␣-subunit (G628S animals). After epicardial atrial gene transfer and pacemaker implantation for burst atrial pacing, animals were evaluated daily for cardiac rhythm. Electrophysiological and molecular studies were performed at baseline and when animals were euthanized on either postoperative day 7 or 21. By day 10, none of the control animals and all of the G628S animals were in sinus rhythm. After day 10, the percentage of G628S animals in sinus rhythm gradually declined until all animals were in AF by day 21. The relative risk of AF throughout the study was 0.44 (95% confidence interval 0.33 to 0.59, PϽ0.01) among the G628S group versus controls. Atrial monophasic action potential was considerably longer in G628S animals than in controls at day 7, and KCNH2 protein levels were 61% higher in the G628S group than in control animals (PϽ0.01). Loss of gene expression at day 21 correlated with loss of action potential prolongation and therapeutic efficacy. Conclusions-Gene therapy with KCNH2-G628S eliminated AF by prolonging atrial action potential duration. The effect duration correlated with transgene expression. (Circulation.
Drug-induced liver injuries have been a major focus of current research in drug development, and are also one of the major reasons for the failure and withdrawal of drugs in development. Drug-induced liver injuries have been systematically recorded in many public databases, which have become valuable resources in this field. In this study, we provide an overview of these databases, including the liver injury-specific databases LiverTox, LTKB, Open TG-GATEs, LTMap and Hepatox, and the general databases, T3DB, DrugBank, DITOP, DART, CTD and HSDB. The features and limitations of these databases are summarized and discussed in detail. Apart from their powerful functions, we believe that these databases can be improved in several ways: by providing the data about the molecular targets involved in liver toxicity, by incorporating information regarding liver injuries caused by drug interactions, and by regularly updating the data.
Immunoreactive profiles of urinary proteins may be able to be developed into a useful diagnostic tool to identify active stone formation, although a separate panel may be required for men and women. It is possible that these differences may provide clues as to why the incidence of stone disease is higher in men than women.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.