Ship detection plays an important role in automatic remote sensing image interpretation. The scale difference, large aspect ratio of ship, complex remote sensing image background and ship dense parking scene make the detection task difficult. To handle the challenging problems above, we propose a ship rotation detection model based on a Feature Fusion Pyramid Network and deep reinforcement learning (FFPN-RL) in this paper. The detection network can efficiently generate the inclined rectangular box for ship. First, we propose the Feature Fusion Pyramid Network (FFPN) that strengthens the reuse of different scales features, and FFPN can extract the low level location and high level semantic information that has an important impact on multi-scale ship detection and precise location of dense parking ships. Second, in order to get accurate ship angle information, we apply deep reinforcement learning to the inclined ship detection task for the first time. In addition, we put forward prior policy guidance and a long-term training method to train an angle prediction agent constructed through a dueling structure Q network, which is able to iteratively and accurately obtain the ship angle. In addition, we design soft rotation non-maximum suppression to reduce the missed ship detection while suppressing the redundant detection boxes. We carry out detailed experiments on the remote sensing ship image dataset, and the experiments validate that our FFPN-RL ship detection model has efficient detection performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.