Background Inflammation-related predisposition to cancer plays an essential role in cancer progression and is associated with poor prognosis. A hypoxic microenvironment and neutrophil infiltration are commonly present in solid tumours, including gastric cancer (GC). Neutrophil extracellular traps (NETs) have also been demonstrated in the tumour immune microenvironment (TIME), but how NETs affect GC progression remains unknown. Here, we investigated the role of NET formation in the TIME and further explored the underlying mechanism of NETs in GC tumour growth. Methods Hypoxia-induced factor-1α (HIF-1α), citrulline histone 3 (citH3) and CD66b expression in tumour and adjacent nontumor tissue samples was evaluated by western blotting, immunofluorescence and immunohistochemical staining. The expression of neutrophil-attracting chemokines in GC cells and their hypoxic-CM was measured by qRT‒PCR and ELISA. Neutrophil migration under hypoxic conditions was evaluated by a Transwell assay. Pathway activation in neutrophils in a hypoxic microenvironment were analysed by western blotting. NET formation was measured in vitro by immunofluorescence staining. The protumour effect of NETs on GC cells was identified by Transwell, wound healing and cell proliferation assays. In vivo, an lipopolysaccharide (LPS)-induced NET model and subcutaneous tumour model were established in BALB/c nude mice to explore the mechanism of NETs in tumour growth. Results GC generates a hypoxic microenvironment that recruits neutrophils and induces NET formation. High mobility group box 1 (HMGB1) was translocated to the cytoplasm from the nucleus of GC cells in the hypoxic microenvironment and mediated the formation of NETs via the toll-like receptor 4 (TLR4)/p38 MAPK signalling pathway in neutrophils. HMGB1/TLR4/p38 MAPK pathway inhibition abrogated hypoxia-induced neutrophil activation and NET formation. NETs directly induced GC cell invasion and migration but not proliferation and accelerated the augmentation of GC growth by increasing angiogenesis. This rapid tumour growth was abolished by treatment with the NET inhibitor deoxyribonuclease I (DNase I) or a p38 MAPK signalling pathway inhibitor. Conclusions Hypoxia triggers an inflammatory response and NET formation in the GC TIME to augment tumour growth. Targeting NETs with DNase I or HMGB1/TLR4/p38 MAPK pathway inhibitors is a potential therapeutic strategy to inhibit GC progression.
Blood transfusions are sometimes necessary after a high loss of blood due to injury or surgery. Some people need regular transfusions due to medical conditions such as haemophilia or cancer. Studies have suggested that extracellular DNA including mitochondrial DNA present in the extracellular milieu of transfused blood products has biological actions that are capable of activating the innate immune systems and potentially contribute to some adverse reactions in transfusion. From the present work, it becomes increasingly clear that extracellular DNA encompassed mitochondrial DNA is far from being biologically inert in blood products. It has been demonstrated to be present in eligible blood products and thus can be transfused to blood recipients. Although the presence of extracellular DNA in human plasma was initially detected in 1948, some aspects have not been fully elucidated. In this review, we summarize the potential origins, clearance mechanisms, relevant structures, and potential role of extracellular DNA in the innate immune responses and its relationship with individual adverse reactions in transfusion.
A total of 24,000 healthy 1-day-old Arbor Acres broilers with similar initial weights were used in this study and fed a basal diet supplemented with 0, 400 and 800 mg/kg isoleucine (Ile), denoted CON, ILE400 and ILE800, respectively. Results revealed that the final body weight, average daily weight gain, and eviscerated carcass rate, of broiler chickens in the ILE400 group were significantly higher than in other groups (p < 0.05). In addition, the ILE400 and ILE800 groups had a lower feed conversion rate and a higher survival rate and breast muscle rate (p < 0.05), while the abdominal fat rate was significantly lower than the CON group (p < 0.05). There were significantly lower serum concentrations of UREA, glucose (GLU) and total cholesterol (TCHO) in the ILE400 and ILE800 groups than in the CON group (p < 0.05); glutathione peroxidase (GSH-Px) activity was significantly higher in the ILE400 group than in the other groups, and tumor necrosis factor-alpha (TNF-α) concentration was considerably lower than in other groups (p < 0.05). Moreover, interleukin (IL)-10 concentration in the ILE800 group was significantly higher than in the other groups (p < 0.05). The ILE400 group significantly down-regulated the mRNA expressions of fatty-acid synthase (FASN) and solid alcohol regulatory element binding protein 1c (SREBP1c), and significantly up-regulated the mRNA expressions of adipose triglyceride lipase (ATGL), hormone-sensitive lipase (HSL), lipoprotein lipase (LPL) and sirtuin1 (Sirt1) (p < 0.05). The ILE400 group had significantly higher intestinal villus height than the CON and ILE800 groups, while the ILE800 group had significantly lower intestinal villus height/crypt depth (p < 0.05). Furthermore, high-throughput sequencing showed that the Shannon index, and Verrucomicrobiota, Colidextribacter and Bacteroides abundances were significantly higher in the ILE400 group than in the CON group (p < 0.05). Interestingly, the ILE800 group reduced the Simpson index, phylum Firmicutes and Bacteroidota abundances (including genera Colidextribacter, Butyricicoccus, [Ruminococcus]_torques_group, Bacteroides, Alistipes, Barnesiella and Butyricimonas), and increased Proteobacteria and Cyanobacteria (including genera Dyella, Devosia, unidentified_Chloroplast and Hyphomicrobium) (p < 0.05). Overall, our study showed that adding 400 mg/kg Ile to the diet (diets total Ile levels at 1.01%, 0.90% and 0.87% during the starter, grower and finisher phases, respectively) increased production performance and improved the health status in broiler chickens.
The objective of this study was to investigate the effects of adding tannic acid (TA) extracted from Galla chinensis to the diet of broiler chickens on intestinal development. A total of 324 healthy 1-day-old broilers were used in a 42 d study, and divided into two treatment groups at random (six replicates per group). Broilers were either received a basal diet or a basal diet supplemented with 300 mg/kg microencapsulated TA extracted from Galla chinensis. The results showed that dietary supplemented with 300 mg/kg TA from Galla chinensis improved intestinal morphology, promoted intestinal mucosal barrier integrity, and elevated mucosal expressions of nutrients transporters and tight junction protein CLDN3 in broilers. Besides, 300 mg/kg TA from Galla chinensis supplementation decreased the concentrations of inflammatory cytokines in serum and intestinal mucosa and reduced the mRNA expression of NF-κB in intestinal mucosa. Above all, supplementation of 300 mg/kg microencapsulated TA extracted from Galla chinensis showed beneficial effects in improving intestinal development, which might be attributed to the suppression of inflammatory responses via blockage of NF-κB in broiler chickens. These findings will support the use of TA sourced from Galla chinensis in poultry industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.