Conventional deconvolution methods assume that the microscopy system is spatially invariant, introducing considerable errors. We developed a method to more precisely estimate space-variant point-spread functions from sparse measurements. To this end, a space-variant version of deblurring algorithm was developed and combined with a total-variation regularization. Validation with both simulation and real data showed that our PSF model is more accurate than the piecewise-invariant model and the blending model. Comparing with the orthogonal basis decomposition based PSF model, our proposed model also performed with a considerable improvement. We also evaluated the proposed deblurring algorithm. Our new deblurring algorithm showed a significantly better signal-to-noise ratio and higher image quality than those of the conventional space-invariant algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.