Wearable and elastic pressure sensors have caused widespread concern due to the popularity of smart terminals and human health monitoring. To obtain a flexible pressure sensor with a wide detection region and outstanding sensitivity, exploring new materials and novel structures has become the first choice for the research. Here, a wearable and flexible MXene fibrous network pressure sensor (MFNS) with a high sensitivity and wide detection region is reported. The holistic fiber network is composed of pure MXene fibers; among them, MXene fibers were prepared by wet-spinning of MXene nanosheets. The MFNS exhibits a high sensitivity in a wide detection region (51 kPa −1 for 14.7 kPa and 427 kPa −1 within the 14.7−19.9 kPa range), a low detection limit (8 Pa), a robust durability (10,000 cycles), and a prompt response (95 ms). Due to the superior performance of MFNS, it also proves prospective applications for human motion signal detection (such as swallowing, pulse beat, and joint motion) and measuring pressure distribution. This work provides an effective way to fabricate a high-performance pressure sensor for human−machine interactions, personal healthcare monitoring, and multitouch devices.
Photothermoelectric (PTE) devices show a promising prospect for realizing photo-induced voltage output using infrared light, which can meet the crucial requirement for photo detector and power source. However, limited utilization...
With the development of transparent and wearable electronic devices, energy supply units with high transmittance and flexibility, long cycle life, and high power and energy density are urgently needed. Zinc ion hybrid capacitors (ZIHCs) combined with the advantages of both supercapacitors and zinc ion batteries are promising energy supply components in the abovementioned devices. In addition, the preparation of multifunctional devices has become a trend for the need of space- and resource-saving. Therefore, obtaining ZIHCs with high transmittance and exploring their potential applications are meaningful challenges. Herein, a transparent and flexible ZIHC composed of a patterned zinc foil anode, transparent MXene cathode, and ZnSO4-polyacrylamide (PAM) hydrogel electrolyte is designed and realized. The ZIHC exhibits a superior capacitance of 318 μF cm–2 (5 mV s–1) with 94% transmittance and retains 76% of the initial capacitance after 10,000 charge–discharge cycles. It also shows excellent flexibility, i.e., its capacitance has no obvious attenuation under different bending states. Interestingly, the leakage current of the ZIHC is highly sensitive to electric fields, which shows potential application in electric field detection. This work presents a method to realize the multifunctional ZIHC with electric field sensing function for transparent and flexible wearable devices in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.