Background Polysaccharide-based hydrogels have been developed for many years to treat burn wounds. Essential oils extracted from aromatic plants generally exhibit superior biological activity, especially antibacterial properties. Studies have shown that antibacterial hydrogels mixed with essential oils have great potential for burn wound healing. This study aimed to develop an antibacterial polysaccharide-based hydrogel with essential oil for burn skin repair. Methods Eucalyptus essential oil (EEO), ginger essential oil (GEO) and cumin essential oil (CEO) were employed for the preparation of effective antibacterial hydrogels physically crosslinked by carboxymethyl chitosan (CMC) and carbomer 940 (CBM). Composite hydrogels were prepared and characterized using antimicrobial activity studies, Fourier-transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, gas chromatography-mass spectrometery, rheological analysis, viscosity, swelling, water loss rate and water vapor transmission rate studies. In addition, the biocompatibility of hydrogels was evaluated in vivo by cytotoxicity and cell migration assays and the burn healing ability of hydrogels was tested in vivo using burn-induced wounds in mice. Results The different essential oils exhibited different mixing abilities with the hydrogel matrix (CMC and CBM), which caused varying levels of reduction in essential oil hydrogel viscosity, swelling and water vapor transmission. Among the developed hydrogels, the CBM/CMC/EEO hydrogel exhibited optimal antibacterial activities of 46.26 ± 2.22% and 63.05 ± 0.99% against Staphylococcus aureus and Escherichia coli, respectively, along with cell viability (>92.37%) and migration activity. Furthermore, the CBM/CMC/EEO hydrogel accelerated wound healing in mouse burn models by promoting the recovery of dermis and epidermis as observed using a hematoxylin–eosin and Masson’s trichrome staining assay. The findings from an enzyme-linked immunosorbent assay demonstrated that the CBM/CMC/EEO hydrogel could repair wounds through interleukin-6 and tumor necrosis factor-α downregulation and transforming growth factor-β, vascular endothelial growth factor (VEGF) and epidermal growth factor upregulation. Conclusions This study successfully prepared a porous CBM/CMC/EEO hydrogel with high antibacterial activity, favorable swelling, optimal rheological properties, superior water retention and water vapor transmission performance and a significant effect on skin repair in vitro and in vivo. The results indicate that the CBM/CMC/EEO hydrogel has the potential for use as a promising burn dressing material for skin burn repair.
The formation of a bacterial biofilm on an infected wound can impede drug penetration and greatly thwart the healing process. Thus, it is essential to develop a wound dressing that can inhibit the growth of and remove biofilms, facilitating the healing of infected wounds. In this study, optimized eucalyptus essential oil nanoemulsions (EEO NEs) were prepared from eucalyptus essential oil, Tween 80, anhydrous ethanol, and water. Afterward, they were combined with a hydrogel matrix physically cross-linked with Carbomer 940 (CBM) and carboxymethyl chitosan (CMC) to prepare eucalyptus essential oil nanoemulsion hydrogels (CBM/CMC/EEO NE). The physical-chemical properties, in vitro bacterial inhibition, and biocompatibility of EEO NE and CBM/CMC/EEO NE were extensively investigated and the infected wound models were proposed to validate the in vivo therapeutic efficacy of CBM/CMC/EEO NE. The results showed that the average particle size of EEO NE was 15.34 ± 3.77 nm with PDI ˂ 0.2, the minimum inhibitory concentration (MIC) of EEO NE was 15 mg/mL, and the minimum bactericidal concentration (MBC) against S. aureus was 25 mg/mL. The inhibition and clearance of EEO NE against S. aureus biofilm at 2×MIC concentrations were 77.530 ± 7.292% and 60.700 ± 3.341%, respectively, demonstrating high anti-biofilm activity in vitro. CBM/CMC/EEO NE exhibited good rheology, water retention, porosity, water vapor permeability, and biocompatibility, meeting the requirements for trauma dressings. In vivo experiments revealed that CBM/CMC/EEO NE effectively promoted wound healing, reduced the bacterial load of wounds, and accelerated the recovery of epidermal and dermal tissue cells. Moreover, CBM/CMC/EEO NE significantly down-regulated the expression of two inflammatory factors, IL-6 and TNF-α, and up-regulated three growth-promoting factors, TGF-β1, VEGF, and EGF. Thus, the CBM/CMC/EEO NE hydrogel effectively treated wounds infected with S. aureus, enhancing the healing process. It is expected to be a new clinical alternative for healing infected wounds in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.