Mutations in genes encoding isocitrate dehydrogenases (IDH) 1 and 2 are common cancer-related genetic abnormalities. Malignancies with mutated IDHs exhibit similar pathogenesis, metabolic pattern, and resistance signature. However, an effective therapy against IDH1-mutated solid tumor remains unavailable. In this study, we showed that acquisition of IDH1 mutation results in the disruption of NADP þ /NADPH balance and an increased demand for glutathione (GSH) metabolism. Moreover, the nuclear factor erythroid 2-related factor 2 (Nrf2) plays a key protective role in IDH1-mutated cells by prompting GSH synthesis and reactive oxygen species scavenging. Pharmacologic inhibition of the Nrf2/GSH pathway via brusatol administration exhibited a potent tumor suppressive effect on IDH1-mutated cancer in vitro and in vivo. Our findings highlight a possible therapeutic strategy that could be valuable for IDH1-mutated cancer treatment.
Pladienolide B is a potent cancer cell growth inhibitor that targets the SF3b1 subunit of the spliceosome. There is considerable interest in the compound as a tool to study SF3b1 function in cancer. However, so far little information is available on the molecular mechanism of SF3b1 eliciting apoptosis in cancer cells. Here, we investigated the molecular mechanism of SF3b1 eliciting apoptosis in human cervical carcinoma cells. We demonstrated that inhibition of SF3b1 by pladienolide B inhibited proliferation of HeLa cells at low nanomolar concentrations in a dose-and time-dependent manner. It also induced G2/M phase arrest and significant rise of apoptotic cells. Moreover, it is indicated that inhibition of SF3b1 by pladienolide B induced Tap73/DNp73 expression and consequently down-regulated Bax/Bcl-2 ratio, cytochrome c release and caspase-3 expression. Thus, our results showed that SF3b1 plays a pivotal role in cycle arrest, apoptosis induction, and p73 splicing in human cervical carcinoma cells, suggesting that SF3b1 could be used as a potential candidate for cervical cancer therapy.
Mutations in isocitrate dehydrogenase (IDH) are commonly observed in lower-grade glioma and secondary glioblastomas. IDH mutants confer a neomorphic enzyme activity that converts α-ketoglutarate to an oncometabolite D-2-hydroxyglutarate, which impacts cellular epigenetics and metabolism. IDH mutation establishes distinctive patterns in metabolism, cancer biology, and the therapeutic sensitivity of glioma. Thus, a deeper understanding of the roles of IDH mutations is of great value to improve the therapeutic efficacy of glioma and other malignancies that share similar genetic characteristics. In this review, we focused on the genetics, biochemistry, and clinical impacts of IDH mutations in glioma.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.