Nanofibrous Kevlar aerogel metamaterials have been made using cryo-3D printing with special drying techniques at a high resolution and low energy cost. They possess outstanding auxetic mechanical properties with a controlled Poisson's ratio and are multi-functionalisable.
This paper addresses the role of macrozone crystallography and morphology in dwell fatigue in titanium alloy Ti-6Al-4V. Until now, the relationship between macrozones and dwell fatigue damage has remained mechanistically uncertain, but this paper establishes a mechanistic link between macrozones and dwell fatigue damage, and explains the preference for dwell facets to be sub-surface. It also outlines the criteria which are important in a potential definition of a macrozone (or microtextured region). High aspect ratio (>~4) macrozones are particularly damaging when their long-axes are orientated near-normal to the principal loading direction, such that their basal planes are oriented to within ~15 degrees to the principal stress direction. These criteria may be useful in guiding the development of a diagnostic experimental measurement tool (based on EBSD or ultrasonics for example) for macrozone detection in components.
This manuscript presents a dislocation density informed eigenstrain based reduced order homogenization model (DD-EHM), and its application on a titanium alloy structure subjected to cyclic loading. The eigenstrain based reduced order homogenization (EHM) approach has been extended to account for the presence of HCP (primary α phase) and BCC (β phase) grains, within which the deformation process is modeled using a dislocation density based crystal plasticity formulation. DD-EHM has been thoroughly verified to assess the accuracy of the reduced order model in capturing local and global behavior compared with direct crystal plasticity finite element method simulations. A structural scale study of titanium alloy Ti-6242S is performed using DD-EHM to quantify and characterize the spatial distribution and evolution of the dislocation pile-ups subjected to cyclic loading. The evolution of pileups at two Modelling and Simulation in Materials Science and Engineering
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.