Thermal energy storage technologies based on phase‐change materials (PCMs) have received tremendous attention in recent years. These materials are capable of reversibly storing large amounts of thermal energy during the isothermal phase transition and offer enormous potential in the development of state‐of‐the‐art renewable energy infrastructure. Thermal conductivity plays a vital role in regulating the thermal charging and discharging rate of PCMs and improving the heat‐utilization efficiency. The strategies for tuning the thermal conductivity of PCMs and their potential energy applications, such as thermal energy harvesting and storage, thermal management of batteries, thermal diodes, and other forms of energy utilization, are summarized systematically. Furthermore, a research perspective is given to highlight emerging research directions of engineering advanced functional PCMs for energy applications.
BackgroundThe incidence of intertrochanteric hip fracture is expected to increase as the global population ages. It is one of the most important causes of mortality and morbidities in the geriatric population. The incidence of reverse oblique and transverse intertrochanteric (AO/OTA 31-A3) fractures is relatively low; however, the incidence of implant failure in AO/OTA 31-A3 fractures is relatively high compared with that in AO/OTA 31-A1 and A2 fractures. To date, the risk factors for implant failure in AO/OTA 31-A3 fractures treated with proximal femoral nail antirotation (PFNA) have remained ambiguous. The purpose of this study was to identify the predictive factors of implant failure in AO/OTA 31-A3 fractures treated with PFNA.MethodsThe data of all patients who underwent surgery for trochanteric fractures at our institution between January 2006 and February 2018 were retrospectively reviewed. All AO/OTA 31-A3 fractures treated with PFNA were included. Logistic regression analysis of potential predictors of implant failure was performed. Potential predictors included age, sex, body mass index, fracture type, reduction method, status of posteromedial support and lateral femoral wall, reduction quality, tip-apex distance and position of the helical blade in the femoral head.ResultsOne hundred four (9.3%) patients with AO/OTA 31-A3 fractures were identified. Forty-five patients with AO/OTA 31-A3 fractures treated with PFNA were suitable for our study. Overall, implant failure occurred in six (13.3%) of forty-five patients. Multivariate analysis identified poor reduction quality (OR, 28.70; 95% CI, 1.91–431.88; p = 0.015) and loss of posteromedial support (OR, 18.98; 95% CI, 1.40–257.08; p = 0.027) as factors associated with implant failure.ConclusionsPoor reduction quality and loss of posteromedial support are predictors of implant failure in reverse oblique and transverse intertrochanteric fractures treated with PFNA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.