The first water-tolerant, ketone-type indium homoenolate was synthesized via the oxidative addition of In/InCl(3) to enones. The reaction proceeds exclusively in aqueous media. Both indium and indium(III) chloride are necessary for the smooth conversion of the reaction. Similar results were obtained when InCl or InCl(2) was used in place of In/InCl(3). The synthetic utility of the indium homoenolate was demonstrated through the synthesis of 1,4-dicarbonyl compounds via palladium-catalyzed coupling of indium homoenolate with acid chloride.
An efficient solid phase synthetic protocol for salicylaldehyde ester peptides is reported. With a Ser or Thr at the N-terminus, these salicylaldehyde ester peptides can be easily converted to Ser/Thr containing cyclic peptides.
A free-radical-mediated dehydrogenative
cross-coupling reaction
of polyfluorinated alcohol with quinone, coumarin, and chromone was
developed. It provides a sustainable and practical strategy for installation
of fluorine atom into organic molecules by using polyfluorinated alcohols.
Thermochromic smart windows technology can intelligently regulate indoor solar radiation by changing indoor light transmittance in response to thermal stimulation, thus reducing energy consumption of the building. In recent years, with the development of new energy-saving materials and the combination with practical technology, energy-saving smart windows technology has received more and more attention from scientific research. Based on the summary of thermochromic smart windows by Yi Long research groups, this review described the applications of thermal responsive organic materials in smart windows, including poly(N-isopropylacrylamide) (PNIPAm) hydrogels, hydroxypropyl cellulose (HPC) hydrogels, ionic liquids and liquid crystals. Besides, the mechanism of various organic materials and the properties of functional materials were also introduced. Finally, opportunities and challenges relating to thermochromic smart windows and prospects for future development are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.