The controlled synthesis of nanohybrids composed of noble metals and metal oxides have received considerable attention for applications in photocatalysis, solar cells, drug delivery, surface enhanced Raman spectroscopy and many other important areas.
A transparent, conductive, and flexible electrode is demonstrated. It is based on an inexpensive and easily manufacturable metallic network formed by depositing metals onto a template film. This electrode shows excellent electro-optical properties, with the figure of merit ranging from 300 to 700, and transmittance from 82% (~4.3 Ω sq(-1) ) to 45% (~0.5 Ω sq(-1) ).
UV light always does great harm to perovskite solar cells, relentlessly degrading perovskites and shortening the lifetime of perovskite devices. Meanwhile, surface defects in perovskite films further accelerate the degradation process and serve as nonradiative charge recombination centers to deteriorate device efficiency. Herein, we demonstrate that a "sunscreen" molecule, 2-hydroxy-4-methoxybenzophenone, not only protects the perovskite solar cell from UV degradation but also enables molecular defect passivation through interaction between functional groups and defects by molecular tautomerism under UV light illumination. Therefore, the sunscreen strategy efficiently enhances the UV endurance of PSCs and improves defect formation energy to À1.35 eV. The perovskite solar cell with sunscreen (sunscreen PSC) exhibits outstanding efficiencies of up to 23.09 % (0.04 cm 2) and 19.73 % (1.00 cm 2) as well as long-term UV (UVa: 365 nm and UVb: 285 nm) stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.