The development of n‐type conjugated polymers with high electrical conductivity (σ) has continued to pose a massive challenge in organic thermoelectrics (OTEs). New structural insights into the charge‐carrier transport are necessitated for the realization of high‐performance OTEs. In this study, three new n‐type copolymers, named pNB, pNB‐Tz, and pNB‐TzDP, consisting of naphthodithiophenediimide (NDTI) and bithiopheneimide (BTI) units, are synthesized by direct arylation polymerization. The backbone orientation is altered by incorporating thiazole units into the backbone and tuning the branching point of the side chain. The alteration of the backbone orientation from face‐on to bimodal orientation with both face‐on and edge‐on fractions significantly impacts the σ and the power factors (PFs) of the polymers. As a result, pNB‐TzDP, with the bimodal orientation, demonstrates a high σ of up to 11.6 S cm−1 and PF of up to 53.4 µW m−1 K−2, which are among the highest in solution‐processed n‐doped conjugated polymers reported so far. Further studies reveal that the bimodal orientation of pNB‐TzDP introduces 3D conduction channels and leads to better accommodation of dopants, which should be the key factors for the excellent thermoelectric performance.
A series of Fe, Mn, and Cu doped Ca3Co4O9+δ samples, Ca3(Co,M)4O9+δ (M=Fe, Mn, and Cu), were fabricated by cold high-pressure compacting technique. Their thermoelectric properties were investigated from room temperature up to 1000 K. The cold high-pressure compacting method is advantageous to increasing density and texture, in favor of the improvement of thermoelectric performance. The electrical transport measurements indicate that Fe/Mn substitutes for Co mainly in [CoO2] layers whereas the substitution of Cu for Co takes place in [Ca2CoO3] layers. The thermoelectric properties as well as electronic correlations depend not only on the substitution ion but also the Co site that is replaced. Thermopower can be well calculated by the carrier effective mass according to Boltzmann transport model, indicating that the electronic correlation plays a crucial role in the unusual thermoelectric characteristics of this system. From the changes in thermopower, resistivity, and thermal conductivity, thermoelectric performance of Ca3Co4O9+δ is efficiently improved by these transition metals doping. Fe doped samples possess the highest ZT values. Combining cold high-pressure technique, ZT of Ca3Co3.9Fe0.1O9+δ can reach ∼0.4 at 1000 K, which is quite large among ceramic oxides, suggesting that Fe doped Ca3Co4O9+δ could be a promising candidate for thermoelectric applications at elevated temperatures.
Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it’s difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.