Owing to its 100% theoretical salt rejection capability, membrane distillation (MD) has emerged as a promising seawater desalination approach to address freshwater scarcity. Ideal MD requires high vapor permeate flux established by cross-membrane temperature gradient (∆T) and excellent membrane durability. However, it’s difficult to maintain constant ∆T owing to inherent heat loss at feedwater side resulting from continuous water-to-vapor transition and prevent wetting transition-induced membrane fouling and scaling. Here, we develop a Ti3C2Tx MXene-engineered membrane that imparts efficient localized photothermal effect and strong water-repellency, achieving significant boost in freshwater production rate and stability. In addition to photothermal effect that circumvents heat loss, high electrically conductive Ti3C2Tx MXene also allows for self-assembly of uniform hierarchical polymeric nanospheres on its surface via electrostatic spraying, transforming intrinsic hydrophilicity into superhydrophobicity. This interfacial engineering renders energy-efficient and hypersaline-stable photothermal membrane distillation with a high water production rate under one sun irradiation.
Photothermal desalination is a promising approach for seawater purification by harvesting solar energy. Titanium carbide (Ti 3 C 2 T x MXene) membranes have been regarded as potential materials for photothermal desalination by virtue of their excellent light-to-heat conversion. However, achieving a well-balanced synergy between high evaporation rate and good salt resistance remains a significant challenge due to their limited solar absorption and inferior stability. Herein, we report a self-assembled flexible porphyrin-Ti 3 C 2 T x MXene Janus membrane (Janus PMX membrane) for dual-functional enabled photothermal desalination. The self-assembly of porphyrin on MXene not only effectively creates a favorable hydrophobic surface but also simultaneously enables efficient solar utilization. The significant interactions and charge redistribution between MXene and porphyrin lead to a stable hydrophobic/hydrophilic Janus structure with synergistically enhanced photothermal conversion. As a result, the Janus PMX membrane demonstrates highly efficient water pumping, heat localization, vapor generation, and salt resistance during photothermal desalination. This work presents an effective and facile strategy toward advancing a well-performing MXene membrane for efficient seawater desalination.
Manipulating liquid is of great significance in fields from life sciences to industrial applications. Owing to its advantages in manipulating liquids with high precision and flexibility, electrowetting on dielectric (EWOD) has been widely used in various applications. Despite this, its efficient operation generally needs electrode arrays and sophisticated circuit control. Here, we develop a largely unexplored triboelectric wetting (TEW) phenomenon that can directly exploit the triboelectric charges to achieve the programmed and precise water droplet control. This key feature lies in the rational design of a chemical molecular layer that can generate and store triboelectric charges through agile triboelectrification. The TEW eliminates the requirement of the electric circuit design and additional source input and allows for manipulating liquids of various compositions, volumes, and arrays on various substrates in a controllable manner. This previously unexplored wetting mechanism and control strategy will find diverse applications ranging from controllable chemical reactions to surface defogging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.