As a result of an author oversight in the originally published version of this article, there were a few errors in the author list and affiliations: (1) Coauthor Evangelos Dioletis was omitted from the author list. E. Dioletis was responsible for conducting experiments and data analysis. (2) The last name of coauthor Irma Garcia-Martinez was misspelled. (3) Coauthor Wei-hong Yang was missing a second affiliation:
The AEB-P (Autonomous Emergency Braking Pedestrian) system has the functional requirements of avoiding the pedestrian collision and ensuring the pedestrian’s life safety. By studying relevant theoretical systems, such as TTC (time to collision) and braking safety distance, an AEB-P warning model was established, and the traffic safety level and work area of the AEB-P warning system were defined. The upper-layer fuzzy neural network controller of the AEB-P system was designed, and the BP (backpropagation) neural network was trained by collected pedestrian longitudinal anti-collision braking operation data of experienced drivers. Also, the fuzzy neural network model was optimized by introducing the genetic algorithm. The lower-layer controller of the AEB-P system was designed based on the PID (proportional integral derivative controller) theory, which realizes the conversion of the expected speed reduction to the pressure of a vehicle braking pipeline. The relevant pedestrian test scenarios were set up based on the C-NCAP (China-new car assessment program) test standards. The CarSim and Simulink co-simulation model of the AEB-P system was established, and a multi-condition simulation analysis was performed. The results showed that the proposed control strategy was credible and reliable and could flexibly allocate early warning and braking time according to the change in actual working conditions, to reduce the occurrence of pedestrian collision accidents.
Large-area Au∕Pt∕n-In0.2Ga0.8N Schottky contacts have been fabricated for photovoltaic devices. The current transport mechanisms of the Schottky contacts to n-In0.2Ga0.8N with different background carrier concentrations are investigated. The thermionic emission is a dominating current transport mechanism at the Pt∕n-InGaN interface in a low background carrier concentration sample, while the defect-assisted tunneling current and trap-related recombination current play important roles in high background carrier concentration samples. The Schottky diode fabricated using the low background carrier concentration sample gives much better Schottky barrier characteristics and exhibits a three to four order of magnitude higher spectral responsivity and a larger rejection ratio in comparison with those fabricated using the high background carrier concentration samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.