Huwentoxin-IV (HWTX-IV), a peptide with 35 amino acid residues, was discovered in the venom of spider Ornithoctonus huwena. The peptide had an inhibitory effect on a tetrodotoxin-sensitive (TTX-S) sodium channel with highly sensitive to Nav1.7, an attractive target for pain release therapy. In this study we further demonstrated the analgesic effects of HWTX-IV using mouse and rat as an inflammatory pain model and/or a neuropathic pain models. In the both cases, the analgesic effects of the peptide were dose-dependent, and statistically significant. In the inflammatory model, 100 µg/kg of HWTX-IV produced an efficient reversal of hyperalgesia up to 63.6% after injection of formalin in rats with the efficiency equivalent to that of morphine at 50 µg/kg, and 200 µg/kg of HWTX-IV produced protective effect up to 55.6% after injection of acetic acid with the efficiency equivalent to that of morphine at 100 µg/kg. In the spinal nerve model, the peptide produced the longer and higher reversal effect on allodynia than Mexiletine. These results demonstrated that HWTX-IV released efficiently the acute inflammatory pain and chronic neuropathic pain in these animals, suggesting that HWTX-IV was a potential and efficient candidate for further clinical drug development against inflammatory and neuropathic pain.
Two human-infecting avian influenza viruses (AIVs), H7N9 and H10N8, have emerged in China, which further indicate that the H9N2 subtype of AIVs, as an internal gene donor, may have an important role in the generation of new viruses with cross-species transmissibility and pathogenicity. H9N2 viruses that contain such internal genes widely exist in poultry but are rarely reported in migratory birds. In this study, two strains of the H9N2 virus were isolated from fecal samples of migratory birds in 2014: one strain from Caizi Lake in Anhui Province and one from Chen Lake in Hubei Province of China. Nucleotide sequence analysis revealed high homology of all six internal genes of these two strains with the internal genes of the human H10N8 virus in Jiangxi Province, as well as with the human H7N9 virus. Phylogenetic analysis indicated a possible origin of these two strains from poultry in South China. Both of the two viruses tested could replicated in respiratory organs of infective mice without adaption, by both strains of the H9N2 AIVs from wild birds, suggesting their potential capacity for directly infecting mammals. Our findings indicate the existence of H9N2 viruses that contain internal genes highly homologous with human H10N8 or H7N9 viruses. Wild birds can contribute to the spread of the H9N2 virus that contains the “harmful” internal gene complex, leading to gene rearrangement with other influenza viruses and to the generation of new pathogenic viruses. Therefore, strengthening AIV surveillance in wild birds can promote an understanding of the presence and prevalence of viruses and provide scientific evidence for the prevention and control of AIVs and human-infecting AIVs.
Bilateral CN IX, X, and/or VII impairment with areflexia or hyporeflexia, early abnormal F-wave response, nerve conduction abnormalities, and CSF albuminocytologic dissociation support a diagnosis of this GBS cranial variant.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.