Coronavirus disease-2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infection is spreading globally and poses a huge threat to human health. Besides common respiratory symptoms, some patients with COVID-19 experience gastrointestinal symptoms, such as diarrhea, nausea, vomiting, and loss of appetite. SARS-CoV-2 might infect the gastrointestinal tract through its viral receptor angiotensin-converting enzyme 2 (ACE2) and there is increasing evidence of a possible fecal–oral transmission route. In addition, there exist multiple abnormalities in liver enzymes. COVID-19-related liver injury may be due to drug-induced liver injury, systemic inflammatory reaction, and hypoxia–ischemia reperfusion injury. The direct toxic attack of SARS-CoV-2 on the liver is still questionable. This review highlights the manifestations and potential mechanisms of gastrointestinal and hepatic injuries in COVID-19 to raise awareness of digestive system injury in COVID-19.
Trace elements play important roles in human health, but little is known about their functions in humoral immunity. Here, we show an important role for iron in inducing cyclin E and B cell proliferation. We find that iron-deficient individuals exhibit a significantly reduced antibody response to the measles vaccine when compared to iron-normal controls. Mice with iron deficiency also exhibit attenuated T-dependent or T-independent antigen-specific antibody responses. We show that iron is essential for B cell proliferation; both iron deficiency and α-ketoglutarate inhibition could suppress cyclin E1 induction and S phase entry of B cells upon activation. Finally, we demonstrate that three demethylases, KDM2B, KDM3B and KDM4C, are responsible for histone 3 lysine 9 (H3K9) demethylation at the cyclin E1 promoter, cyclin E1 induction and B cell proliferation. Thus, our data reveal a crucial role of H3K9 demethylation in B cell proliferation, and the importance of iron in humoral immunity.
Recombinant human bone morphogenetic protein-2 (rhBMP-2) is widely used in the clinic for bone defect reconstruction because of its powerful osteoinductive capacity. However, commercially available rhBMP-2 requires a high concentration in the clinical setting for consistent bone formation. A high dose of rhBMP-2 induces a promising bone formation yield but also leads to inflammation-related events, deteriorated bone quality, and fatty tissue formation. We hypothesize that the seemingly contradictory phenomenon of coformation of new bone and excessive adipose tissue in rhBMP-2-induced bone voids may be associated with interleukin-6 (IL-6), which is significantly elevated after application of rhBMP-2/absorbable collagen sponge (rhBMP-2/ACS). Here, we show that IL-6 injection enhances new bone regeneration and induces excessive adipose tissue formation in an rhBMP-2/ACS-induced ectopic bone formation model in rats. In vitro data further show that IL-6 and its soluble receptor sIL-6R synergistically augment rhBMP-2-induced osteogenic and adipogenic differentiation of human BMSCs (hBMSCs) by promoting cell surface translocation of BMPR1A and then amplifying BMPR1A-mediated BMP/Smad and p38 MAPK pathways, respectively. Our study suggests elevated IL-6 may be responsible for coformation of new bone and excessive adipose tissue in rhBMP-2-induced bone voids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.