Rhizosphere microorganisms are closely associated with phosphorus (P) uptake in plants and are considered potential agents to mitigate P shortage. However, the mechanisms of rhizospheric microbial community assembly under P deficiency have yet to be elucidated. In this study, bacterial and fungal communities in rice rhizosphere and their P mobilization potential under high (+P) and low (−P) concentrations of P were investigated. Bacterial and fungal community structures were significantly different between −P and +P treatments. And both bacterial and fungal P-mobilizing taxa were enriched in-P treatment; however, the proportion of P-mobilizing agents in the fungal community was markedly greater than that in the bacterial community. A culture experiment confirmed that microbial phosphate solubilizing capacity was significantly higher in −P treatment compared with that in +P treatment. −P treatment lowered bacterial diversity in rice rhizosphere but increased fungal diversity. Further analysis demonstrated that the contribution of deterministic processes in governing bacterial community assembly was strengthened under P deficiency but was largely weakened in shaping the fungal community. These results highlighted that enriching P-mobilizing microbes in the rhizosphere is a vital way for rice to cope with P deficiency, and that fungi contribute considerably to P mobilization in rice rhizosphere. Findings from the study provide novel insights into the assembly of the rhizosphere microbiome under P deficiency and this will facilitate the development of rhizosphere microbial regulation strategies to increase nutrient uptake in plants.
As the most basic structure, the concrete-filled steel tubular (CFST) frame has been widely used in various structures and systems. Compared with conventional reinforced concrete structures and steel structures, CFST structures in strong earthquake showcase more complicated strength and deformation behavior because there are many factors underlying the failure mode. Furthermore, according to the specifications at home and abroad, the corresponding design method to achieve reasonable failure modes for CFST structures has not been clarified. Based on a destructive test on steel beam-CFST plane frames under constant axial load and lateral load, the fiber mode method and solid element model method are adopted to simulate the failure process of the test frames. Based on finite element model simulations and tests, the fiber model method is proposed to carry out the pushover analysis on the CFST frame structures. The factors behind the reasonable failure mode of steel beam-concrete-filled circular steel tubular (CFCST) frame structures are analyzed. Furthermore, the law and influencing factors behind the ratio of flexural capacity of column to beam, the ratio of line stiffness of beam to column, and the ratio of axial compression on the deformation, bearing capacity, and failure modes of the structure are discussed. Some suggestions on the design of reasonable failure mode of steel beam-concrete-filled circular steel tubular (CFCST) frame structures are proposed.
The FPGA with Avalon Bus architecture and Nios soft-core processor developed by Altera Corporation is an advanced embedded solution for control and interface systems. A CCD data acquisition system with an Ethernet terminal port based on the TCP/IP protocol is implemented in NAOC, which is composed of a piece of interface board with an Altera's FPGA, 32MB SDRAM and some other accessory devices integrated on it, and two packages of control software used in the Nios II embedded processor and the remote host PC respectively. The system is used to replace a 7200 series image acquisition card which is inserted in a control and data acquisition PC, and to download commands to an existing CCD camera and collect image data from the camera to the PC. The embedded chip in the system is a Cyclone FPGA with a configurable Nios II soft-core processor. Hardware structure of the system, configuration for the embedded soft-core processor, and peripherals of the processor in the PFGA are described. The C program run in the Nios II embedded system is built in the Nios II IDE kits and the C++ program used in the PC is developed in the Microsoft's Visual C++ environment. Some key techniques in design and implementation of the C and VC++ programs are presented, including the downloading of the camera commands, initialization of the camera, DMA control, TCP/IP communication and UDP data uploading.
In view of the common problems existing in the cultivation of innovative abilities of local college students, this paper proposes a discipline competition as a link to take a series of initiatives such as optimizing training programs, improving the curriculum group, strengthening laboratory construction and practical teaching infrastructure construction, and attaching importance to school-enterprise cooperation, establishment of the discipline competition base, the improvement of the faculty team construction, etc., aiming to improve the innovative ability of local college students and build a multi-level and comprehensive discipline competition system. 1
Steel-concrete composite structures that share the advantages of both steel structure and concrete structure have been developed rapidly and used widely. It has been a popular structure in high-rise buildings in recent years. Although more and more composite structures have been used in earthquake area, only a few literatures about fragility analysis of this type of structure are available. In this paper, a fragility analysis method based on performance is proposed, in which both the uncertainty due to variability in structures and ground motion are considered. Seismic fragility analysis is performed for a 15-story composite beam-concrete-filled square steel tube column frame by the proposed method. The top-drift-angle and the story-drift-angle are used as quantitative indexes to define the four different performance levels. Then seismic demand probability analysis is carried out and fragility curves are derived to assess the seismic performance of this type of structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.