Abstract. Marine diazotrophs convert dinitrogen (N2) gas into bioavailable nitrogen (N), supporting life in the global ocean. In 2012, the first version of the global oceanic diazotroph database (version 1) was published. Here, we present an updated version of the database (version 2), significantly increasing the number of in situ diazotrophic measurements from 13 565 to 55 286. Data points for N2 fixation rates, diazotrophic cell abundance, and nifH gene copy abundance have increased by 184 %, 86 %, and 809 %, respectively. Version 2 includes two new data sheets for the nifH gene copy abundance of non-cyanobacterial diazotrophs and cell-specific N2 fixation rates. The measurements of N2 fixation rates approximately follow a log-normal distribution in both version 1 and version 2. However, version 2 considerably extends both the left and right tails of the distribution. Consequently, when estimating global oceanic N2 fixation rates using the geometric means of different ocean basins, version 1 and version 2 yield similar rates (43–57 versus 45–63 Tg N yr−1; ranges based on one geometric standard error). In contrast, when using arithmetic means, version 2 suggests a significantly higher rate of 223±30 Tg N yr−1 (mean ± standard error; same hereafter) compared to version 1 (74±7 Tg N yr−1). Specifically, substantial rate increases are estimated for the South Pacific Ocean (88±23 versus 20±2 Tg N yr−1), primarily driven by measurements in the southwestern subtropics, and for the North Atlantic Ocean (40±9 versus 10±2 Tg N yr−1). Moreover, version 2 estimates the N2 fixation rate in the Indian Ocean to be 35±14 Tg N yr−1, which could not be estimated using version 1 due to limited data availability. Furthermore, a comparison of N2 fixation rates obtained through different measurement methods at the same months, locations, and depths reveals that the conventional 15N2 bubble method yields lower rates in 69 % cases compared to the new 15N2 dissolution method. This updated version of the database can facilitate future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687; Shao et al., 2022).
Abstract. Marine diazotrophs convert dinitrogen (N2) in seawater into bioavailable nitrogen (N), contributing approximately half of the external input of bioavailable N to the global ocean. A global oceanic diazotroph database was previously published in 2012. Here, we compiled version 2 of the database by adding 23,095 in situ measurements of marine diazotrophic abundance and N2 fixation rates published in the past decade, increasing the number of N2 fixation rates and microscopic and qPCR-based diazotrophic abundance data by 140 %, 26 % and 443 %, respectively. Although the updated database expanded spatial coverage considerably, particularly in the Indian Ocean, the data distribution was still not uniform and most data were sampled in the surface Pacific and Atlantic Oceans. By summing the arithmetic means of the N2 fixation rates in each ocean basin, the updated database substantially increased the estimate of global oceanic N2 fixation from 137 ± 9 Tg N yr-1 using the old database to 260 ± 20 Tg N yr-1 (mean ± standard error). However, using geometric means instead, the updated database gave an estimate of global oceanic N2 fixation (60 Tg N yr-1) similar to that estimated from the old database (62 Tg N yr-1), while the new estimate had a larger uncertainty (confidence intervals based on one standard error: 47 – 107 Tg N yr-1 versus 52 – 73 Tg N yr-1), mostly attributable to elevated uncertainties in the Pacific Ocean. An analysis comparing N2 fixation rates measured at the same months and location (1° × 1° grids) showed that the new 15N2 dissolution method obtained N2 fixation rates higher than the conventional 15N2 bubble method in 65 % of cases, with this percentage increasing when the N2 fixation rates were high (> approximately 3 μmol N m-3 d-1 using the 15N2 dissolution method). With greatly increased data points, this version 2 of the global oceanic diazotrophic database can support future studies in marine ecology and biogeochemistry. The database is stored at the Figshare repository (https://doi.org/10.6084/m9.figshare.21677687) (Shao et al., 2022).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.