BackgroundObstructive sleep apnea (OSA) is a sleep disorder characterized as complete or partial upper airflow cessation during sleep. Although it has been widely accepted that OSA is a risk factor for the development of hypertension, the studies focusing on this topic revealed inconsistent results. We aimed to clarify the association between OSA and hypertension, including essential and medication-resistant hypertension.MethodsThe Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) was followed. PubMed and Embase databases were used for searching the relevant studies published up to December 31, 2016. A quantitative approach of meta-analysis was performed to estimate the pooled odds ratio (OR) and 95% confidence interval (CI).ResultsTwenty-six studies with 51 623 participants (28 314 men, 23 309 women; mean age 51.8 years) met inclusion criteria and were included in this study. Among them, six studies showed a significant association between OSA and resistant hypertension (pooled OR = 2.842, 95% CI = 1.703-3.980, P < 0.05). Meanwhile, the combination of 20 original studies on the association of OSA with essential hypertension also presented significant results with the pooled ORs of 1.184 (95% CI = 1.093-1.274, P < 0.05) for mild OSA, 1.316 (95% CI = 1.197-1.433, P < 0.05) for moderate OSA and 1.561 (95% CI = 1.287-1.835, P < 0.05) for severe OSA.ConclusionsOur findings indicated that OSA is related to an increased risk of resistant hypertension. Mild, moderate and severe OSA are associated essential hypertension, as well a dose-response manner relationship is manifested. The associations are relatively stronger among Caucasians and male OSA patients.
We report the observation by angle-resolved photoemission spectroscopy measurements of a highly anisotropic Dirac-cone structure in high quality SrMnBi 2 crystals. We reveal a well-defined sharp quasi-particle, linearly dispersive withforming a hole-like anisotropic Dirac-cone. The density of states for the cone remains linear up to as high as ~650 meV of binding energy. The scattering rate of the quasi-particle (QP) increases linearly as function of binding energy, indicating a non-Fermi-Liquid behavior.Our results suggest the existence of a dilute two-dimensional electron gas system in this three-dimensional material.
We report a comprehensive study of the tridimensional nature and orbital characters of the low-energy electronic structure in KCo2Se2, using polarization- and photon energy-dependent angle-resolved photoemission spectroscopy. We observed one electron-like Fermi surface (FS) at the Brillouin zone (BZ) center, four electron-like FSs centered at the BZ corner, and one hole-like FS at the BZ boundary. The FSs show weak dispersion along the kz direction, indicating the near-two-dimensional nature of FSs in KCo2Se2. In combination with the local-density approximation calculations, we determined the orbital characters of the low-energy electronic bands, which are mainly derived from the Co 3d orbital, mixed with part of the Se 4p states. The [Formula: see text] orbital gives a significant contribution to the band crossing the Fermi level. A band renormalization of about 1.6 is needed to capture the essential dispersive features, which suggests that electronic correlations are much weaker than that in KyFe2-xSe2.
The iron-based superconductivity (IBSC) is a great challenge in correlated system. Angle-resolved photoemission spectroscopy (ARPES) provides electronic structure of the IBSCs, the pairing strength, and the order parameter symmetry. Here, we briefly review the recent progress in IBSCs and focus on the results from ARPES. The ARPES study shows the electronic structure of "122", "111", "11", and "122 * " families of IBSCs. It has been agreed that the IBSCs are unconventional superconductors in strong coupling region. The order parameter symmetry basically follows s ± form with considerable out-of-plane contribution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.