Facing the scientific question of the origin of chirality in life, water is considered to play a crucial role in driving many biologically relevant processes in vivo. Water has been demonstrated in vitro to be related to chiral generation, amplification, and inversion, while the underlying mechanism is still not fully understood. Real-space evidence at the single-molecule level is thus urgently required to understand the role of water molecules in biomolecular chirality related issues. Herein, we choose one of the RNA bases, the biomolecule uracil (U), which selfassembles into racemic hydrogen-bonded structures. Upon water exposure, surprisingly, racemic structures could be transformed to homochiral waterinvolved structures, resulting in an unexpected chiral separation on the surface. The origin of chiral separation is due to preferential binding between water and the specific site of U molecules, which leads to the formation of the energetically most favorable homochiral (U−H 2 O−U) 2 cluster as seed for subsequent chiral amplification. Such a water-driven self-assembly process may also be extended to other biologically relevant systems such as amino acids and sugars, which would provide general insights into the role that water molecules may play in the origin of homochirality in vivo.
Water, as one of the most important and indispensable small molecules in vivo, plays a crucial role in driving biological self-assembly processes. Real-space detection and identification of water-induced organic structures and further capture of dynamic dehydration processes are important yet challenging, which would help to reveal the cooperation and competition mechanisms among water-involved noncovalent interactions. Herein, introduction of water molecules onto the self-assembled thymine (T) structures under ultrahigh vacuum (UHV) conditions results in the hydration of hydrogen-bonded T dimers forming a well-ordered water-involved T structure. Reversibly, a local dehydration process is achieved by in situ scanning tunneling microscopy (STM) manipulation on single water molecules, where the adjacent T dimers connected with water molecules undergo a local chiral inversion process with the hydrogen-bonding configuration preserved. Such a strategy enables real-space identification and detection of the interactions between water and organic molecules, which may also shed light on the understanding of biologically relevant self-assembly processes driven by water.
This research paper systematically investigates the combined influence of fly ash, cementitious capillary crystalline waterproofing (CCCW) materials, and polypropylene fibers on the mechanical properties and impermeability of concrete through comprehensive orthogonal tests. Microscopic morphological changes in the concrete induced by different composite materials are examined via scanning electron microscopy (SEM) and X-ray diffraction (XRD) testing. The objective is to facilitate a beneficial synergetic interaction among these materials to develop highly permeable, crack-resistant concrete. Key findings of this study are: (1) The study unveils the impact of the concentration of three additive materials on the concrete’s compressive strength, tensile strength, and penetration height, thereby outlining their significant influence on the mechanical properties and impermeability of the concrete; (2) An integrated scoring method determined the optimal composite dosage of three materials: 15% fly ash, 2% CCCW, and polypropylene fibers at 1.5 kg/m3. This combination increased the concrete’s compressive strength by 12.5%, tensile strength by 48.4%, and decreased the average permeability height by 63.6%; (3) The collective introduction of these three materials notably augments the hydration reaction of the cement, resulting in denser concrete microstructure, enhanced bonding between fibers and matrix, and improved concrete strength and durability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.