A series of organoselenium compounds based on the hybridization of nonsteroidal antiinflammatory drugs (NSAIDs) scaffolds and Se functionalities (-SeCN and -SeCF 3 ) were synthesized and characterized, and evaluated against four types of cancer cell lines, SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Interestingly, most of the investigated compounds showed active in reducing the viability of different cancer cell lines. The most active compound 3h showed IC 50 values lower than 20 μM against the four cancer cell lines, particularly to SW480 and MCF-7 with IC 50 values of 4.9 and 3.4 μM, respectively. Furthermore, NSAIDs-SeCN derivatives (2h and 2i) and NSAIDs-SeCF 3 derivatives (3h and 3i) were selected to investigate their ability to induce apoptosis in MCF-7 cells via modulation the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-3 protein. Moreover, the redox properties of the synthesized organoselenium candidates were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin dependent DNA damage and glutathione peroxidase (GPx)-like assays. Taken together, these NSAIDs-Se candidates could provide promising new lead derivatives for further potential anticancer drug development.
Divergent syntheses of two 14‐membered resorcylic acid lactones (RALs), cochliomycin B (6) and zeaenol (22), have been accomplished. The key feature in our strategy was the facile construction of three contiguous stereogenic centers in the title molecules by using natural L‐arabinose as the chiral template. The key reactions included Takai olefination, Suzuki cross coupling, transesterification, and a late‐stage ring‐closing metathesis (RCM).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.