In the present study, twenty-four selenocyanate and diselenide compounds were synthesized and characterized, and their anticancer activities against the human cancer cell lines Caco2, BGC-823, MCF-7 and PC-3 were determined. Interestingly, most of the new compounds were active in reducing the viability of different cancer cell lines. Two compounds exhibited higher promising activities than other derivatives. The most active compound showed the least IC 50 values against the four cancer cell lines, particularly to PC-3 with IC 50 values below 5 μM. Two compounds were selected to monitor the expression levels of Bcl-2, IL-2 and caspase-3 molecular biomarkers. Interestingly, the two compounds downregulated the Bcl-2 expression levels and upregulated the expression of IL-2 and caspase-3 in PC-3 cells compared to untreated cells. Moreover, most of the synthesized organoselenides exhibited good Gpx-like activities comparable to ebselen. These results appear that introduction of selenocyanate (À SeCN) or diselenides (À SeÀ SeÀ ) moiety to some carboxy derivatives could serve as a promising launch point for the further design of this type of organic selenium anticancer agent. Figure 3. The glutathione peroxidase-like activity assay of compounds 1a -1l and 2a -2l in μM min -1 .
In this study, we report on the synthesis of new organoselenium derivatives, including nonsteroidal anti-inflammatory drugs (NSAIDs) scaffolds and Se functionalities (isoselenocyanate and selenourea), which were evaluated against four types of cancer cell line: SW480 (human colon adenocarcinoma cells), HeLa (human cervical cancer cells), A549 (human lung carcinoma cells), MCF-7 (human breast adenocarcinoma cells). Among these compounds, most of the investigated compounds reduced the viability of different cancer cell lines. The most promising compound 6b showed IC50 values under 10 μM against the four cancer cell lines, particularly to HeLa and MCF-7, with IC50 values of 2.3 and 2.5 μM, respectively. Furthermore, two compounds, 6b and 6f, were selected to investigate their ability to induce apoptosis in MCF-7 cells via modulation of the expression of anti-apoptotic Bcl-2 protein, pro-inflammatory cytokines (IL-2) and proapoptotic caspase-3 protein. The redox properties of the NSAIDs-Se derivatives were conducted by 2, 2-didiphenyl-1-picrylhydrazyl (DPPH), bleomycin-dependent DNA damage and glutathione peroxidase (GPx)-like assays. Finally, a molecular docking study revealed that an interaction with the active site of thioredoxin reductase 1 (TrxR1) predicted the antiproliferative activity of the synthesized candidates. Overall, these results could serve as a promising launch point for further designs of NSAIDs-Se derivatives as potential antiproliferative agents.
In this study, sixteen new 5,5-cyclopropanespirohydantoin derivatives were synthesized and tested for anticonvulsant activity using maximal electroshock (MES), subcutaneous pentylenetetrazole screens. Their neurotoxicity was determined by the rotarod test. Two compounds 7f and 7n showed promising anticonvulsant activities in both models employed for anticonvulsant evaluation. The most active compound 7f showed the MES-induced seizures with ED 50 value of 8.5 mg/kg and TD 50 value of 381.7 mg/kg after intraperitoneally injection to mice, which provided compound 7f with a protective index (TD 50 /ED 50 ) of 44.9 in the MES test.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.