The identification and validation of drug targets are crucial in biomedical research and many studies have been conducted on analyzing drug target features for getting a better understanding on principles of their mechanisms. But most of them are based on either strong biological hypotheses or the chemical and physical properties of those targets separately. In this paper, we investigated three main ways to understand the functional biomolecules based on the topological features of drug targets. There are no significant differences between targets and common proteins in the protein-protein interactions network, indicating the drug targets are neither hub proteins which are dominant nor the bridge proteins. According to some special topological structures of the drug targets, there are significant differences between known targets and other proteins. Furthermore, the drug targets mainly belong to three typical communities based on their modularity. These topological features are helpful to understand how the drug targets work in the PPI network. Particularly, it is an alternative way to predict potential targets or extract nontargets to test a new drug target efficiently and economically. By this way, a drug target's homologue set containing 102 potential target proteins is predicted in the paper.
Background Cognitive ability refers to the ability to receive, process, store, and extract information. It is the most important psychological condition for people to successfully complete activities. Previous studies have shown that the design of the human-computer interface of the command and control system cannot exceed the cognitive ability of the operator of the command and control system, and it must match the cognitive ability of the operator in order to reduce the mental load intensity, and improve the accuracy, timeliness and work efficiency. However, previous researchers in the field of cognitive science have not put forward a core index system that can represent the cognitive ability of ship command and control system operators and the importance of each index, and there are few achievements that can be used for reference. Objective To explore the core index system of cognitive ability that affecting the cognitive process of command and control system operators, and to verify the index system. Methods Based on the classic O*NET questionnaire, two indexes of O*NET were revised, three indexes of response ability were added, and then a questionnaire on the importance evaluation of cognitive abilities index was formed. The questionnaire includes 24 indexes in six aspects: verbal abilities, idea generation and reasoning abilities, quantitative abilities, visual perception abilities, mnemonic and attentive abilities, and response abilities. The cognitive ability importance evaluation data of 202 people from different positions in the ship command and control system were collected. These data reflect the overall level of cognitive ability of operators in the whole ship command and control field.
The past few decades have witnessed the boom in pharmacology as well as the dilemma of drug development. Playing a crucial role in drug design, the screening of potential human proteins of drug targets from open access database with well-measured physical and chemical properties is a task of challenge but significance. In this paper, the screening of potential drug target proteins (DTPs) from a fine collected dataset containing 5376 unlabeled proteins and 517 known DTPs was researched. Our objective is to screen potential DTPs from the 5376 proteins. Here we proposed two strategies assisting the construction of dataset of reliable nondrug target proteins (NDTPs) and then bagging of decision trees method was employed in the final prediction. Such two-stage algorithms have shown their effectiveness and superior performance on the testing set. Both of the algorithms maintained higher recall ratios of DTPs, respectively, 93.5% and 97.4%. In one turn of experiments, strategy1-based bagging of decision trees algorithm screened about 558 possible DTPs while 1782 potential DTPs were predicted in the second algorithm. Besides, two strategy-based algorithms showed the consensus of the predictions in the results, with approximately 442 potential DTPs in common. These selected DTPs provide reliable choices for further verification based on biomedical experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.