The objective of this study was to investigate the molecular interaction and complex stability of four major cow's milk (CM) proteins (α-LA, β-LG, α s1-CA, and β-CA) with cyanidin-3-O-glucoside (C3G) using computational methods. The results of molecular docking analysis revealed that hydrogen bond and hydrophobic interaction were the main binding forces to maintain the stability of the C3G-CM protein complexes. Molecular dynamics simulation results showed that all complexes except for C3Gα s1-CA were found to reach equilibrium within 50 ns of simulation. α s1-CA and β-CA switched to a more compact conformation after binding with C3G. Additionally, the radius of gyration, number of hydrogen bond, radial distribution function, and interaction energy showed that β-CA is the best C3G carrier protein among the four CM proteins. This study can provide valuable information for CM proteins to serve as C3G delivery carriers. Practical applications Anthocyanins (ACNs) are flavonoid-based pigments that play an important functional role in regulating human's health. Cow's milk (CM) proteins are the most representative protein-based carriers that can improve the short-term bioavailability and stability of ACNs. Thus, it is important to study the interactions between ACNs and CM proteins at the molecular level for the development of effective ACNs delivery carriers. Our study showed that caseins (α s1-CA and β-CA) had more hydrophobic and hydrogen-bonding sites with cyanidin-3-O-glucoside (C3G) than whey proteins using computational methods. Among the four CM proteins, β-CA was the best C3G carrier protein showing the best interaction stability with C3G. Thus, it is helpful for us to screen effective ACNs carriers from multiple protein sources by computational methods.
The objective of this work was to explore the possibility of improving the antioxidant capacity and application of whey protein (WP) through non-covalent interactions with hesperidin (HES), a citrus polyphenol with nutraceutical activity. The interaction mechanism was elucidated using several spectroscopic methods and molecular docking analysis. The antioxidant capacity of the WP-HES complexes was analyzed and compared to that of the proteins alone. Moreover, the resistance of oil-in-water emulsions formulated using the WP-HES complexes as antioxidant emulsifiers to changes in environmental conditions (pH, ion strength, and oxidant) was evaluated. Our results showed that HES was incorporated into a single hydrophobic cavity in the WP molecule, where it was mainly held by hydrophobic attractive forces. As a result, the microenvironments of the non-polar tyrosine and tryptophan residues in the protein molecules were altered after complexation. Moreover, the α-helix and β-sheet regions in the protein decreased after complexation, while the β-turn and random regions increased. The antioxidant capacity of the WP-HES complexes was greater than that of the proteins alone. Non-radiative energy transfer from WP to HES was detected during complex formation. Compared to WP alone, the WP-HES complexes produced emulsions with smaller mean droplet diameters, exhibited higher pH and salt stability, and had better oxidative stability. The magnitude of these effects increased as the HES concentration was increased. This research would supply valuable information on the nature of the interactions between WP and HES. Moreover, it may lead to the creation of dual-function antioxidant emulsifiers for application in emulsified food products.
Small enterprises are an important component of the national economy and valuable customers of commercial banks. Commercial banks use credit ratings, including financial and nonfinancial indices, to analyze small enterprises before committing to long-term collaborations, including loans. This paper uses a support vector machine algorithm to establish an imbalanced multi-classification model and compares the results to those of other methods. Commercial banks need simplified variable analysis credit ratings that use minimal information to rapidly and accurately obtain credit ratings and improve the efficiency of the process. Accordingly, we perform multiple tests of simplified rating systems using fewer variables.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.