The natural compound eye has received much attention in recent years due to its remarkable properties, such as its large field of view (FOV), compact structure, and high sensitivity to moving objects. Many studies have been devoted to mimicking the imaging system of the natural compound eye. The paper gives a review of state-of-the-art artificial compound eye imaging systems. Firstly, we introduce the imaging principle of three types of natural compound eye. Then, we divide current artificial compound eye imaging systems into four categories according to the difference of structural composition. Readers can easily grasp methods to build an artificial compound eye imaging system from the perspective of structural composition. Moreover, we compare the imaging performance of state-of-the-art artificial compound eye imaging systems, which provides a reference for readers to design system parameters of an artificial compound eye imaging system. Next, we present the applications of the artificial compound eye imaging system including imaging with a large FOV, imaging with high resolution, object distance detection, medical imaging, egomotion estimation, and navigation. Finally, an outlook of the artificial compound eye imaging system is highlighted.
A multilayer piezoelectric actuator is a promising linear vibrator. In this article, a simple distributed-parameter analytical model of piezoelectric actuator, which can model vibration characteristics of piezoelectric actuator–based applications, is formulated. Based on the physical analysis of piezoelectric actuator, a simplification is proposed, justified and applied to fundamentals of thickness-extension-mode piezoelectricity. This simplification subtly enables piezoelectric actuator to be effectively modelled as a whole and allows for a formulation of a simple analytical model. Compared with other modelling methods in the literature, the proposed model with a small number of easily accessible parameters is easy to handle and extend with little compromised accuracy. The effectiveness of the proposed model has been validated by a three-dimensional finite element analysis model of piezoelectric actuator developed in commercial software ANSYS.
A stick-slip/inchworm hybrid rotary piezomotor based on a symmetric triangular driving mechanism, which can simultaneously achieve the benefits of both stick-slip and inchworm motors, was reported in this letter. It is based on the principle of stick-slip motors, and, inspired by the clamping-releasing actions from inchworm motors, it employs a symmetric triangular driving mechanism to generate a clamping action during the stick phase and a releasing action during the slip phase. Compared with stick-slip motors, it involves a clamping action during the stick phase and a releasing action during the slip phase, thus resulting in a larger driving force. Compared with inchworm motors, which require active control and coordination of clamping/releasing modules with feeding modules, it involves the control and operation of only one feeding piezoactuator without any actively controlled clamping/releasing module. Therefore, the control is easier, and a much larger operation frequency and driving speed can be achieved. Under the sawtooth waveform voltage of 90 V at 2600 Hz with a self-holding torque of 4 N m, the prototype achieved a no-load speed higher than 0.6 rad/s, a load torque capacity larger than 1.8 N m, and a weight carrying capacity more than 100 kg for both clockwise and anticlockwise directions. Compared with load torque capacity and weight carrying capacity in the reported stick-slip and inchworm rotary piezomotors, the current levels in terms of the same driving speed have been improved over 60 times and 12 times, respectively, in the proposed hybrid motor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.