Objective. N7-methylguanosine modification-related lncRNAs (m7G-related lncRNAs) are involved in progression of many diseases. This study was aimed at revealing the risk correlation between N7-methylguanosine modification-related lncRNAs and survival prognosis of oral squamous cell carcinoma. Methods. In the present study, coexpression network analysis and univariate Cox analysis were used to obtained 31 m7G-related mRNAs and 399 m7G-related lncRNAs. And the prognostic risk score model of OSCC patients was evaluated and optimized through cross-validation. Results. Through the coexpression analysis and risk assessment analysis of m7G-related prognostic mRNAs and lncRNAs, it was found that six m7G-related prognostic lncRNAs (AC005332.6, AC010894.1, AC068831.5, AL035446.1, AL513550.1, and HHLA3) were high-risk lncRNAs. Three m7G-related prognostic lncRNAs (AC007114.1, HEIH, and LINC02541) were protective lncRNAs. Then, survival curves were drawn by comparing the survival differences between patients with high and low expression of each m7G-related prognostic lncRNA in the prognostic risk score model. Further, risk curves, scatter plots, and heat maps were drawn by comparing the survival differences between high-risk and low-risk OSCC patients in the prognostic model. Finally, forest maps and the ROC curve were generated to verify the predictive power of the prognostic risk score model. Our results will help to find early and accurate prognostic risk markers for OSCC, which could be used for early prediction and early clinical intervention of survival, prognosis, and disease risk of OSCC patients in the future.
Herein, we evaluated the potential therapeutic effects of water extracts from Eucommia on periodontitis in experimental rats. We ligated the maxillary second molars of Sprague–Dawley(SD) rats with 4.0 silk threads and locally smeared Porphyromonas gingivalis(P. gingivalis) to induce gingivitis and periodontitis.After the model was successfully established, we exposed the rats to Eucommia water extracts through topical smearing and intragastric administration and evaluated the therapeutic effect of the extracts on gingivitis (for a 2 week treatment period) and periodontitis (over 4 weeks). We analyzed histopathological sections of the periodontal tissue and quantified the alveolar bone resorption levels, molecules related to periodontal oxidative stress, and periodontal inflammatory factors to assess the feasibility of Eucommia in treating gingivitis and periodontitis. We found that damage to the periodontal tissue was reduced after treatment with extracts,indicating that Eucommia has a positive effect in treating gingivitis and periodontitis in experimental rats. These findings are expected to provide the foothold for future research on secondary metabolites derived from Eucommia and guide the development of novel approaches for preventing and treating periodontal disease.
Herein, we evaluated the potential therapeutic effects of water extracts from Eucommia on periodontitis in experimental rats. We ligated the maxillary second molars of SD rats with 4.0 silk threads and locally smeared Porphyromonas gingivalis to induce gingivitis and periodontitis. After successfully establishing the model, we exposed the rats to Eucommia water extracts through topical smearing and intragastric administration and evaluated the therapeutic effect of the extracts on gingivitis (for a 2 week treatment period) and periodontitis (over 4 weeks). We recorded the alveolar bone resorption levels and analyzed histopathological sections of the periodontal tissue, molecules related to periodontal oxidative stress, and periodontal inflammatory factors to understand the feasibility of Eucommia in treating gingivitis and periodontitis. Results showed reduced damage to the periodontal tissue after treatment with extracts, indicating that Eucommia has a positive effect in treating gingivitis and periodontitis in experimental rats. These findings are expected to provide the foothold for future research on secondary metabolites derived from Eucommia and guide the development of novel approaches for preventing and treating periodontal disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.