Toehold-mediated strand displacement and its regulatory tools are fundamental for DNA nanotechnology. However, current regulatory tools all need to change the original sequence of reactants, making the regulation inconvenient and cumbersome. More importantly, the booming development of DNA nanotechnology will soon promote the production of packaged and batched devices or circuits with specified functions. Regarding standardized, packaged DNA nanodevices, access to personalized post-modification will greatly help users, whereas none of the current regulatory tools can provide such access, which has greatly constrained DNA nanodevices from becoming more powerful and practical. Herein, we developed a novel regulation tool named Cap which has two basic functions of subtle regulation of the reaction rate and erasability. Based on these functions, we further developed three advanced functions. Through integration of all functions of Cap and its distinct advantage of working independently, we finally realized personalized tailor-made post-modification on pre-fabricated DNA circuits. A pre-fabricated dual-output DNA circuit was successfully transformed into an equal-output circuit, a signal-antagonist circuit and a covariant circuit according to our requirements. Taken together, Cap is easy to design and generalizable for all strand displacement-based DNA nanodevices. We believe the Cap tool will be widely used in regulating reaction networks and personalized tailor-made post-modification of DNA nanodevices.
Although CRISPR-Cas12a [clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 12a] combining pre-amplification technology has the advantage of high sensitivity in biosensing, its generality and specificity are insufficient, which greatly restrains its application range. Here, we discovered a new targeting substrate for LbaCas12a (Lachnospiraceae bacterium Cas12a), namely double-stranded DNA (dsDNA) with a sticky-end region (PAM−SE+ dsDNA). We discovered that CRISPR-Cas12a had special enzymatic properties for this substrate DNA, including the ability to recognize and cleave it without needing a protospacer adjacent motif (PAM) sequence and a high sensitivity to single-base mismatches in that substrate. Further mechanism studies revealed that guide RNA (gRNA) formed a triple-stranded flap structure with the substrate dsDNA. We also discovered the property of low-temperature activation of CRISPR-Cas12a and, by coupling with the unique DNA hybridization kinetics at low temperature, we constructed a complete workflow for low-abundance point mutation detection in real samples, which was fast, convenient and free of single-stranded DNA (ssDNA) transformation. The detection limits were 0.005–0.01% for synthesized strands and 0.01–0.05% for plasmid genomic DNA, and the mutation abundances provided by our system for 28 clinical samples were in accordance with next-generation sequencing results. We believe that our work not only reveals novel information about the target recognition mechanism of the CRISPR-Cas12a system, but also greatly broadens its application scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.