Nitrogen causes the frequent occurrence of harmful algal blooms and possible microcystin production. The effects of ammonia and alanine (Ala) on the growth and microcystin production of Microcystis aeruginosa were investigated using an isotope tracer ((15)N). The results indicated that Ala was directly used by M. aeruginosa and contributed to biomass formation amounting to 2.1 × 10(7) cells mL(-1) on day 48, compared with only 6.2 × 10(6) cells mL(-1) from ammonia alone. Microcystin-LR production with Ala was less than that of ammonia, which peaked at 50.2 fg cell(-1) on day 6. Liquid chromatographic analysis with tandem mass spectrometry of (15)N-microcystin-LR suggested that (15)N from ammonia was probably synthesized into the arginine residue. By contrast, (15)N from Ala was assimilated into the Ala, leucine, the iso-linked (2R,3S)-3-methylaspartic acid, arginine, and certain unusual C20 amino acid residues. The results represent the forward steps in the determination of the nitrogen forms that fuel toxin production and blooms.
The effects of synthetic wastewater that contained 20 mg/L Cu(II) on the removal of organic pollutants in a sequencing batch reactor were investigated. Results of continuous 20 mg/L Cu(II) exposure for 120 days demonstrated that the chemical oxygen demand (COD) removal efficiency decreased to 42% initially, followed by a subsequent gradual recovery, which peaked at 78% by day 97. Effluent volatile fatty acid (VFA) concentration contributed 67 to 89% of the influent COD in the experimental reactor, which indicated that the degradation of the organic substances ceased at the VFA production step. Meanwhile, the varieties of soluble microbial products (SMP) content and main components (protein, polysaccharide, and DNA) were discussed to reveal the response of activated sludge to the toxicity of 20 mg/L Cu(II). The determination of Cu(II) concentrations in extracellular polymeric substances (EPS) and SMP throughout the experiment indicated an inverse relationship between extracellular Cu(II) concentration and COD removal efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.