The visual recognition of Android malicious applications (Apps) is mainly focused on the binary classification using grayscale images, while the multiclassification of malicious App families is rarely studied. If we can visualize the Android malicious Apps as color images, we will get more features than using grayscale images. In this paper, a method of color visualization for Android Apps is proposed and implemented. Based on this, combined with deep learning models, a multiclassifier for the Android malicious App families is implemented, which can classify 10 common malicious App families. In order to better understand the behavioral characteristics of malicious Apps, we conduct a comprehensive manual analysis for a large number of malicious Apps and summarize 1695 malicious behavior characteristics as customized features. Compared with the App classifier based on the grayscale visualization method, it is verified that the classifier using the color visualization method can achieve better classification results. We use four types of Android App features: classes.dex file, sets of class names, APIs, and customized features as input for App visualization. According to the experimental results, we find out that using the customized features as the color visualization input features can achieve the highest detection accuracy rate, which is 96% in the ten malicious families.
The visual recognition of Android malicious applications (Apps) is mainly focused on the binary classification using grayscale images, while the multiclassification of malicious App families is rarely studied. If we can visualize the Android malicious Apps as color images, we will get more features than using grayscale images. In this paper, a method of color visualization for Android Apps is proposed and implemented. Based on this, combined with deep learning models, a multiclassifier for the Android malicious App families is implemented, which can classify 10 common malicious App families. In order to better understand the behavioral characteristics of malicious Apps, we conduct a comprehensive manual analysis for a large number of malicious Apps and summarize 1695 malicious behavior characteristics as customized features. Compared with the App classifier based on the grayscale visualization method, it is verified that the classifier using the color visualization method can achieve better classification results. We use four types of Android App features: classes.dex file, sets of class names, APIs, and customized features as input for App visualization. According to the experimental results, we find out that using the customized features as the color visualization input features can achieve the highest detection accuracy rate, which is 96% in the ten malicious families.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.