With the escalating demand for high speed, high reliability, low latency, low cost and ubiquitous connectivity, the telecommunications industry is entering a new era where the ultimate optimality of the current wireline-wireless access network has to be achieved. Regarding the current wireline network paradigm, dominated by the copper-based digital subscriber lines (DSL) technology, multi-Gigabit data rate is the ambitious design objective at the customer end for the forthcoming ITU-T G.mgfast standard. In order to prepare for the new challenges in the era of total network convergence, both the wireline and the wireless community must be able to think beyond their respective conventions and learn from each other if necessary. Overall, the current DSL-based wireline network architecture is prone to the mutual interference resulting in far-end crosstalk (FEXT). The newly expanded 424/848 MHz spectrum of the ambitious G.mgfast project introduces far higher FEXT than that over the current 212/30 MHz G.fast/VDSL2 band. Additionally, the coexistence of multiple standards will also cause 'alien' FEXT. In these cases, using the plain zero forcing precoding (ZFP) will no longer attain a sufficiently high performance. However, as shown in the field of wireless communications, using lattice reduction as a signal space remapping technique significantly improves the performance of traditional multiuser detectors (MUD) and of the respective multiuser precoders (MUP). These promising techniques have largely remained unexploited in commercial wireless communications, due to their complexity in the face of the rapidly fluctuating wireless channels. In this survey, we present an overview of the state-of-the-art in wireline access network and an outlook for recent technological advances in the holistic 'wireline + wireless' access network in the context of network convergence, focusing on the dominant challenge of FEXT mitigation in future DSL networks. Against this background, we investigate both the family of linear precoding and of the Tomlinson-Harashima precoding (THP) schemes conceived for classic DSL. Furthermore, we present a tutorial on the family of lattice reduction aided MUPs, as well as quantifying their expected performances in realistic DSL scenarios. As a by-product, we also demonstrate the duality between MUP and MUD, in the hope that the fifty years' history of MUD could be used to accelerate the development of efficient near-optimal MUPs for future DSL. Under the recommended operating conditions of the 212 MHz profile of G.fast, our benchmark comparisons indicate that the lattice reduction aided techniques are very powerful compared to conventional schemes. In particular, their good performances do not rely on optimized spectrum balancing, and they are also shown to be relatively robust against channel state information (CSI) estimation error, under the assumption of perfectly time-invariant DSL channels.
Recently a new paradigm of wireless access, termed as cell-free massive multiple-input multiple-output (MIMO), has drawn significant research interest. Its primary distinction from conventional massive MIMO aided cellular networks is the ability to eliminate the detrimental inter-cell interference (ICI), or to convert ICI into extra power for the intended signal via a multi-cell cooperation approach originated from network MIMO. However, the information-theoretical limit of cell-free access is achieved at the expense of large network configuration overhead and high MIMO processing complexity. Because of the dynamic nature of wireless channels, the global channel state information (CSI) invoked for network MIMO quickly becomes outdated, leading to performance degradation. This paper focuses on the cell-free implementation of fixed wireless access (FWA), a complementary solution to fibre-to-the-premise (FTTP) where the latter is prohibitively expensive. In particular, we discuss the centralisation architectures and channel characteristics of cellfree FWA, as well as their joint implications on imperfect CSI performance. Moreover, measurement-based offline simulations show that the long coherence time ('quasi-static') assumption of real-world FWA channels is only valid against a completely motionless background, and thus it should not be used in FWA system design or performance analysis. Finally, we present new research opportunities for cell-free FWA in terms of physical infrastructure, data processing as well as machine learning.
The next generation digital subscriber line (DSL) standard G.mgfast introduces far stronger co-channel interference termed as far-end crosstalk (FEXT) than the existing ones. Given perfect transmitter-side channel state information (CSIT), it is well known that the lattice-reduction-aided K-best sphere encoder (LR-KBSE) is a near-optimal transmit precoding (TPC) technique compared to the classic (LR-) depth-first sphere encoder (DFSE), albeit having significantly lower complexity than the latter. However, the decision feedback precoding (DFP) structure and the Schnorr-Euchner enumeration procedure, both perceived as state-of-the-art in the literature, are not provably optimal for solving the closest vector problem (CVP) embedded in sphere encoding. As a counterexample, this paper proposes a stochastic sphere encoder (SSE) relying on differential evolution aided random walk over lattices. The parallel processing complexity, memory efficiency and signal to noise ratio (SNR) improvement of the proposed SSE are all shown to be superior to the LR-KBSE for G.mgfast systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.