The new era with prosperous artificial intelligence (AI) and robotics technology is reshaping the materials discovery process in a more radical fashion. Here we present authentic intelligent robotics for chemistry (AIR-Chem), integrated with technological innovations in the AI and robotics fields, functionalized with modules including gradient descent-based optimization frameworks, multiple external field modulations, a real-time computer vision (CV) system, and automated guided vehicle (AGV) parts. AIR-Chem is portable and remotely controllable by cloud computing. AIR-Chem can learn the parametric procedures for given targets and carry on laboratory operations in standalone mode, with high reproducibility, precision, and availability for knowledge regeneration. Moreover, an improved nucleation theory of size focusing on inorganic perovskite quantum dots (IPQDs) is theoretically proposed and experimentally testified to by AIR-Chem. This work aims to boost the process of an unmanned chemistry laboratory from the synthesis of chemical materials to the analysis of physical chemical properties, and it provides a vivid demonstration for future chemistry reshaped by AI and robotics technology.
Given that robots are being utilized extensively in chemical synthesis research, the potential applications of robots remain to be explored. Along with the remarkable progress of experimental science, circumstances have occurred in which publications were castigated because of irreproducibility, either because of rigorous experimental conditions or because of initial data forgery. Some credit-assignment issues and plagiarism cases also attracted intense attention throughout the community. As a possible solution to authenticity and originality problems, we herein propose a blockchain integrated automatic experiment platform, BiaeP, which attempts to provide solutions for those kinds of problems. As a result of the integration with blockchain, its data irreversibility secures the authenticity and the timestamp helps prove the originality. Two trial experiments are included as examples. We believe the architecture of BiaeP could be widely applicable for future development of scientific research in experimental subjects, such as chemistry, materials science, biology, and so forth.
Applying deep learning methods in materials science research is an important way of solving the time-consuming problems of typical ab initio quantum chemistry methodology, but due to the size of large molecules, large and uncharted fields still exist. Implementing symmetry information can significantly reduce the calculation complexity of structures, as they can be simplified to the minimum symmetric units. Because there are few quantum chemistry databases that include symmetry information, we constructed a new one, named QM-sym, by designing an algorithm to generate 135k organic molecules with the Cnh symmetry composite. Those generated molecules were optimized to a stable state using Gaussian 09. The geometric, electronic, energetic, and thermodynamic properties of the molecules were calculated, including their orbital degeneracy states and orbital symmetry around the HOMO-LUMO. The basic symmetric units were also included. This database p rovides consistent and comprehensive quantum chemical properties for structures with Cnh symmetries. QM-sym can be used as a benchmark for machine learning models in quantum chemistry or as a dataset for training new symmetry-based models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.