Conjugated microporous polymers (CMPs) are a class of organic porous polymers that combine π-conjugated skeletons with permanent nanopores, in sharp contrast to other porous materials that are not π-conjugated and with conventional conjugated polymers that are nonporous. As an emerging material platform, CMPs offer a high flexibility for the molecular design of conjugated skeletons and nanopores. Various chemical reactions, building blocks and synthetic methods have been developed and a broad variety of CMPs with different structures and specific properties have been synthesized, driving the rapid growth of the field. CMPs are unique in that they allow the complementary utilization of π-conjugated skeletons and nanopores for functional exploration; they have shown great potential for challenging energy and environmental issues, as exemplified by their excellent performance in gas adsorption, heterogeneous catalysis, light emitting, light harvesting and electrical energy storage. This review describes the molecular design principles of CMPs, advancements in synthetic and structural studies and the frontiers of functional exploration and potential applications.
Covalent organic frameworks are a class of crystalline organic porous materials that can utilize π–π-stacking interactions as a driving force for the crystallization of polygonal sheets to form layered frameworks and ordered pores. However, typical examples are chemically unstable and lack intrasheet π-conjugation, thereby significantly limiting their applications. Here we report a chemically stable, electronically conjugated organic framework with topologically designed wire frameworks and open nanochannels, in which the π conjugation-spans the two-dimensional sheets. Our framework permits inborn periodic ordering of conjugated chains in all three dimensions and exhibits a striking combination of properties: chemical stability, extended π-delocalization, ability to host guest molecules and hole mobility. We show that the π-conjugated organic framework is useful for high on-off ratio photoswitches and photovoltaic cells. Therefore, this strategy may constitute a step towards realizing ordered semiconducting porous materials for innovations based on two-dimensionally extended π systems.
Condensation of hydrazine with 1,3,6,8-tetrakis(4-formylphenyl)pyrene under solvothermal conditions yields highly crystalline two-dimensional covalent organic frameworks. The pyrene units occupy the vertices and the diazabutadiene (-C═N-N═C-) linkers locate the edges of rohmbic-shaped polygon sheets, which further stack in an AA-stacking mode to constitute periodically ordered pyrene columns and one-dimensional microporous channels. The azine-linked frameworks feature permanent porosity with high surface area and exhibit outstanding chemical stability. By virtue of the pyrene columnar ordering, the azine-linked frameworks are highly luminescent, whereas the azine units serve as open docking sites for hydrogen-bonding interactions. These synergestic functions of the vertices and edge units endow the azine-linked pyrene frameworks with extremely high sensitivity and selectivity in chemosensing, for example, the selective detection of 2,4,6-trinitrophenol explosive. We anticipate that the extension of the present azine-linked strategy would not only increase the structural diversity but also expand the scope of functions based on this highly stable class of covalent organic frameworks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.