Programmed −1 ribosomal frameshifting (−1 PRF) is a geneexpression mechanism used to express many viral and some cellular genes. In contrast, efficient natural utilization of −2 PRF has not been demonstrated previously in eukaryotic systems. Like all nidoviruses, members of the Arteriviridae (a family of positive-stranded RNA viruses) express their replicase polyproteins pp1a and pp1ab from two long ORFs (1a and 1b), where synthesis of pp1ab depends on −1 PRF. These polyproteins are posttranslationally cleaved into at least 13 functional nonstructural proteins. Here we report that porcine reproductive and respiratory syndrome virus (PRRSV), and apparently most other arteriviruses, use an additional PRF mechanism to access a conserved alternative ORF that overlaps the nsp2-encoding region of ORF1a in the +1 frame. We show here that this ORF is translated via −2 PRF at a conserved G_GUU_UUU sequence (underscores separate ORF1a codons) at an estimated efficiency of around 20%, yielding a transframe fusion (nsp2TF) with the N-terminal two thirds of nsp2. Expression of nsp2TF in PRRSVinfected cells was verified using specific Abs, and the site and direction of frameshifting were determined via mass spectrometric analysis of nsp2TF. Further, mutagenesis showed that the frameshift site and an unusual frameshift-stimulatory element (a conserved CCCANCUCC motif 11 nucleotides downstream) are required to direct efficient −2 PRF. Mutations preventing nsp2TF expression impair PRRSV replication and produce a small-plaque phenotype. Our findings demonstrate that −2 PRF is a functional gene-expression mechanism in eukaryotes and add another layer to the complexity of arterivirus genome expression.Nidovirales | virology | genetic recoding | overlapping gene | translation
Abstract-Unlike traditional wireless routing protocols which use a single fixed path, opportunistic routing explicitly takes advantage of the broadcast nature of wireless communications by using a set of forwarders to opportunistically perform packet forwarding. A key issue in the design of opportunistic routing protocols is the forwarder list selection problem. In this paper we establish a general theory for analyzing the forwarder list selection problem, and develop an optimal solution, the minimum transmission selection (MTS) algorithm, which minimizes the expected number of transmissions and it can be incorporated into existing opportunistic routing protocols to select optimal forwarder lists. Our theory and algorithm can also be generalized to optimize other routing objectives such as minimizing the expected transmission time or energy consumption in opportunistic routing. Through extensive simulations, we demonstrate that in more than 90% cases the MTS algorithm outperforms the ETX forwarder selection scheme used in existing opportunistic routing protocols such as ExOR and MORE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.